已知三棱錐的每條邊長(zhǎng)都是
2
,各個(gè)頂點(diǎn)在同一個(gè)球面上.求球的表面積是多少?
考點(diǎn):球的體積和表面積
專題:
分析:三棱錐就是正四面體,把正四面體補(bǔ)成正方體,兩者的外接球是同一個(gè),求出正方體的棱長(zhǎng),然后求出正方體的對(duì)角線長(zhǎng),就是球的直徑,即可求出球的體積.
解答: 解:三棱錐就是正四面體,把正四面體補(bǔ)成正方體,如圖,則正方體的棱長(zhǎng)是1,正方體的對(duì)角線長(zhǎng)為:
3
,此就是外接球的直徑,可得球的半徑為:
3
2

則此球的表面積為:4π×(
3
2
2=3π.
所求球的表面積為:3π.
點(diǎn)評(píng):本題查空間想象能力,正四面體的外接球轉(zhuǎn)化為正方體外接球,使得問(wèn)題的難度得到降低,問(wèn)題得到解決,注意正方體的對(duì)角線就是球的直徑,也是比較重要的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=
1
2
CD=a,PD=
2
a.
(1)若M為PA中點(diǎn),求證:AC∥平面MDE;
(2)求平面PAD與PBC所成銳二面角的大。ɡ恚;
     求二面角P-AC-D的正切值的大小(文).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)如圖,正三棱錐P-ABC中,底面ABC的邊長(zhǎng)為2,正三棱錐P-ABC的體積為V=1,M為線段BC的中點(diǎn),求直線PM與平面ABC所成的角(結(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線 x2=y,直線L經(jīng)過(guò)點(diǎn)A(-1,2)但不經(jīng)過(guò)點(diǎn)B(1,1),與拋物線交于M,N兩點(diǎn),點(diǎn)M的橫坐標(biāo)大于1,直線L的斜率為k,直線BN,BM的斜率分別為k1,k2
(1)當(dāng)AB垂直于直線L時(shí),求 k1.k2的值.
(2)設(shè)△BAM和△BAN的面積分別為S1,S2,當(dāng)k≤1時(shí),求
S1
S2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,底面△ABC是邊長(zhǎng)為a的正三角形,側(cè)棱長(zhǎng)為
2
2
a
,點(diǎn)D在棱A1C1上.
(1)若A1D=DC1,求證:直線BC1∥平面AB1D;
(2)求AB1與側(cè)面BCC1B1所成角的大小;
(3)請(qǐng)?jiān)诶釧1C1確定點(diǎn)D的位置,使二面角A1-AB1-D的平面角為
π
4
,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E為AB的中點(diǎn).
(Ⅰ)證明:A1D⊥D1E; 
(Ⅱ)求二面角D-CE-D1的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果函數(shù)f(x)=ax(ax-3a2-1)(a>0且a≠0)在區(qū)間[0,+∞)單調(diào)遞增,那么實(shí)數(shù)a的取值范圍是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知ABCD為直角梯形,∠DAB=∠ABC=90°,PA⊥平面ABCD,PA=AB=BC=2,AD=1.
(Ⅰ)求證:BC⊥平面PAB;
(Ⅱ)求平面PAB與平面PCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在長(zhǎng)方體A BCD-A1B1C1D1中,點(diǎn)E,F(xiàn)分別在BB1,DD1上,且AE⊥AB,AF⊥A1D.
(I)求證:A1C⊥平面A EF;
(Ⅱ)若AB=4,AD=3,AA1=5,求平面AEF和平面D1B1BD所成的角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案