已知a>0且a≠1,關于x的不等式ax>1的解集是{x|x>0},解關于x的不等式loga(x-
1x
)<0
分析:可根據(jù)題意求得a>1,從而loga(x-
1
x
)
<0?0<x-
1
x
<1,解此不等式即可.
解答:解:∵關于x的不等式ax>1的解集是{x|x>0},
∴a>1,
loga(x-
1
x
)
<0?0<x-
1
x
<1?
x-
1
x
>0
x-
1
x
<1
,解得
-1<x<0或x>1
1-
5
2
<x<0或x>1

∴-1<x<
1-
5
2
或1<x<
1+
5
2

∴原不等式的解集是(-1,
1-
5
2
)∪(1,
1+
5
2
)
點評:本題考查對數(shù)函數(shù)的單調性,得到a>1是基礎,解不等式0<x-
1
x
<1是難點,考查分析運算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a>0且a≠1,設p:函數(shù)y=ax在R上單調遞增,q:設函數(shù)y=
2x-2a,(x≥2a)
2a,(x<2a)
,函數(shù)y≥1恒成立,若p∧q為假,p∨q為真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•普陀區(qū)二模)已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點;
(2)若關于x的方程F(x)-m=0在區(qū)間[0,1)內(nèi)有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0且a≠1,則使方程loga(x-ak)=loga2(x2-a2)有解時的k的取值范圍為
(-∞,-1)∪(0,1)
(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點;
(2)試討論函數(shù)F(x)在定義域D上的單調性;
(3)若關于x的方程F(x)-2m2+3m+5=0在區(qū)間[0,1)內(nèi)僅有一解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:普陀區(qū)二模 題型:解答題

已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
1
1-x
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點;
(2)若關于x的方程F(x)-m=0在區(qū)間[0,1)內(nèi)有解,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案