14.已知g(x)=(ax-$\frac{x}$-2a)ex(a>0),若存在x0∈(1,+∞),使得g(x0)+g'(x0)=0,則$\frac{a}$的取值范圍是( 。
A.(-1,+∞)B.(-1,0)C.(-2,+∞)D.(-2,0)

分析 求出g(x)的導(dǎo)數(shù),問題等價于存在x>1,2ax3-3ax2-2bx+b=0成立,求出$\frac{a}$=$\frac{{2x}^{3}-{3x}^{2}}{2x-1}$,設(shè)u(x)=$\frac{{2x}^{3}-{3x}^{2}}{2x-1}$(x>1),根據(jù)函數(shù)的單調(diào)性求出$\frac{a}$的范圍即可.

解答 解:∵g(x)=(ax-$\frac{x}$-2a)ex,
∴g′(x)=($\frac{{x}^{2}}$+ax-$\frac{x}$-a)ex,
∴由g(x)+g′(x)=0,整理得2ax3-3ax2-2bx+b=0.
存在x>1,使g(x)+g′(x)=0成立,
等價于存在x>1,2ax3-3ax2-2bx+b=0成立,
∵a>0,∴$\frac{a}$=$\frac{{2x}^{3}-{3x}^{2}}{2x-1}$,
設(shè)u(x)=$\frac{{2x}^{3}-{3x}^{2}}{2x-1}$(x>1),
則u′(x)=$\frac{8x{[(x-\frac{3}{4})}^{2}+\frac{3}{16}]}{{(2x-1)}^{2}}$,
∵x>1,∴u′(x)>0恒成立,
∴u(x)在(1,+∞)上是增函數(shù),
∴u(x)>u(1)=-1,
∴$\frac{a}$>-1,即$\frac{a}$的取值范圍為(-1,+∞),
故選:A.

點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.執(zhí)行下邊的算法流程圖,則輸出的i=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)全集為R,函數(shù)f(x)=$\frac{1}{\sqrt{{x}^{2}-1}}$的定義域為集合M,則∁RM為(  )
A.[-1,1]B.(-1,1)C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}中,a1=1,其前n項的和為Sn,且滿足an=$\frac{2{{S}_{n}}^{2}}{2{S}_{n}-1}$(n≥2).
(1)求證:數(shù)列{$\frac{1}{{S}_{n}}$}是等差數(shù)列;
(2)證明:當(dāng)n≥2時,S1+$\frac{1}{2}$S2+$\frac{1}{3}$S3+…+$\frac{1}{n}$Sn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知直線l過直線3x+4y-5=0和2x+y=0的交點;
(1)當(dāng)l與直線3x-2y-1=0垂直時,求l;
(2)當(dāng)l與直線3x-2y-1=0平行時,求l.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中,在區(qū)間(1,+∞)上為增函數(shù)的是( 。
A.y=-2x+1B.$y=\frac{x}{1-x}$C.$y={log_{\frac{1}{2}}}(x-1)$D.y=-(x-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x2-4x+(2-a)lnx,(a∈R)
(1)當(dāng)a=8時,求:
①f(x)的單調(diào)增區(qū)間;
②曲線y=f(x)在點(1,-3)處的切線方程.
(2)求函數(shù)f(x)在區(qū)間[e,e2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.下列命題中,正確的序號是  ①
①函數(shù)f(x)=$\frac{2x+1}{x-2}$的對稱中心為(2,2).
②向量$\overrightarrow a$,$\overrightarrow b$滿足|${\overrightarrow a$+$\overrightarrow b}$|=|${\overrightarrow a$-$\overrightarrow b}$|,則$\overrightarrow a$⊥$\overrightarrow b$
③將函數(shù)y=2sin(2x+$\frac{π}{4}$)向右平移$\frac{3}{8}$π個單位,將圖象上每一點橫坐標(biāo)縮短為原來的$\frac{1}{2}$倍,所得函數(shù)為y=2cos4x
④定義運算$|\begin{array}{l}{a_1}\;\;\;\;{a_2}\\{b_1}\;\;\;\;{b_2}\end{array}|$=a1b2-a2b1,則函數(shù)f(x)=$|\begin{array}{l}{x^2}+3x\;\;\;\;\;1\\ x\;\;\;\;\;\;\;\;\;\;\;\frac{1}{3}x\end{array}|$的圖象在(1,$\frac{1}{3}$)處的切線方程為6x-3y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)U=R,A={x|x>0},B={x|x>1},則A∪∁UB=( 。
A.{x|0≤x<1}B.{x|0<x≤1}C.{x|x<0}D.R

查看答案和解析>>

同步練習(xí)冊答案