4.執(zhí)行下邊的算法流程圖,則輸出的i=4.

分析 結合框圖,寫出幾次循環(huán)的結果,判斷每一次的結果是否滿足判斷框的條件,直到滿足,就執(zhí)行輸出.

解答 解:經(jīng)過第一次循環(huán)得到s=20,i=2,
經(jīng)過第二次循環(huán)得到s=4,i=3,
經(jīng)過第三次循環(huán)得到s=$\frac{4}{5}$,i=4,
此時,滿足判斷框的條件,執(zhí)行輸出4,
故答案為:4.

點評 本題考查解決程序框圖中的循環(huán)結構時,常采用寫出前幾次循環(huán)的結果,找規(guī)律,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.已知A(1,-1),B(4,0),C(2,2).平面區(qū)域D由所有滿足$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$(1<λ≤a,1<μ≤b)的點P(x,y)組成.若區(qū)域D的面積為8,則的a+4b最小值為9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知集合P={x∈N|y=$\sqrt{2x-{x}^{2}}$},Q={x∈N|1≤x<2},則P∩Q=(  )
A.{0,1}B.{1,2}C.{1}D.[1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.A,B是任意角,“A=B”是“sinA=sinB”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.一個幾何體的三視圖如圖,其中正視圖和俯視圖都是邊長為2的正方形,則該幾何體的體積是( 。
A.4B.8C.$\frac{4}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,已知橢圓C:$\frac{x^2}{9}+\frac{y^2}{b^2}$=1(0<b<3)的左右焦點分別為E、F,過點F的直線交橢圓于A,B兩點,若$\overrightarrow{AF}$=2$\overrightarrow{FB}$,且$\overrightarrow{AE}$•$\overrightarrow{BE}$=16.
(1)求橢圓C的方程;
(2)設直線x=my+1與橢圓交于不同的兩點P,Q,判斷在x軸上是否存在定點N,使x軸平分∠PNQ,若存在,求出點N的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知一個四棱錐的三視圖如圖所示,則此四棱錐的體積為(  )
A.1B.$\frac{4}{3}$C.$\frac{5}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設Sn是數(shù)列{an}的前n項和,且2Sn=3an-$\frac{2}{9}$,an≠0(n∈N*);
(1)求數(shù)列{an}的通項公式an和Sn;
(2)若bn=$\frac{2n+3}{{(9{S_n}+1)n(n+1)}}$=$\frac{a}{{n•{3^{n-1}}}}$-$\frac{1}{{(n+1)•{3^n}}}$,(n∈N*),求bn和a值;
(3)設Tn是數(shù)列{bn}的前n項和,求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知g(x)=(ax-$\frac{x}$-2a)ex(a>0),若存在x0∈(1,+∞),使得g(x0)+g'(x0)=0,則$\frac{a}$的取值范圍是( 。
A.(-1,+∞)B.(-1,0)C.(-2,+∞)D.(-2,0)

查看答案和解析>>

同步練習冊答案