已知函數(shù)為常數(shù),),且數(shù)列是首項(xiàng)為,公差為的等差數(shù)列.

(1) 若,當(dāng)時,求數(shù)列的前項(xiàng)和;                      

(2)設(shè),如果中的每一項(xiàng)恒小于它后面的項(xiàng),求的取值范圍.

 

【答案】

(1)  (2)

【解析】

試題分析:(1) 由題意,即,   1分

.  ……2分

當(dāng)時,.         3分

,      ①

    ②    4分

①-②,得 

 6分

   7分

(2)由(1)知,,要使對一切成立,

對一切成立.          ……8分

,對一切恒成立,

只需,   10分

單調(diào)遞增,∴當(dāng)時,.   12分

,且, ∴.     13分

綜上所述,存在實(shí)數(shù)滿足條件.    14分

考點(diǎn):本題考查了數(shù)列的求和及不等式的證明

點(diǎn)評:數(shù)列的通項(xiàng)公式及應(yīng)用是數(shù)列的重點(diǎn)內(nèi)容,數(shù)列的大題對邏輯推理能力有較高的要求,在數(shù)列中突出考查學(xué)生的理性思維,這是近幾年新課標(biāo)高考對數(shù)列考查的一個亮點(diǎn),也是一種趨勢.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇蘇北四市高三第一次質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)為常數(shù)),其圖象是曲線

1)當(dāng)時,求函數(shù)的單調(diào)減區(qū)間;

2)設(shè)函數(shù)的導(dǎo)函數(shù)為,若存在唯一的實(shí)數(shù),使得同時成立,求實(shí)數(shù)的取值范圍;

3)已知點(diǎn)為曲線上的動點(diǎn),在點(diǎn)處作曲線的切線與曲線交于另一點(diǎn),在點(diǎn)處作曲線的切線,設(shè)切線的斜率分別為.問:是否存在常數(shù),使得?若存在,求出的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016屆浙江省寧波市八校高一上學(xué)期期末聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)為常數(shù),且.

1)當(dāng)時,求函數(shù)的最小值(用表示);

2)是否存在不同的實(shí)數(shù)使得,,并且,若存在,求出實(shí)數(shù)的取值范圍;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省南陽市高三9月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分10分)

已知函數(shù)為常數(shù),)的圖象過點(diǎn).

(1)求實(shí)數(shù)的值;

(2)若函數(shù),試判斷函數(shù)的奇偶性,并說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省高二上學(xué)期段考數(shù)學(xué)卷 題型:解答題

已知函數(shù)為常數(shù),),滿足,且有兩個相同的解。

(1)求的表達(dá)式;

(2)設(shè)數(shù)列滿足,且,求證:數(shù)列是等差數(shù)列。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年吉林省高三第一次模擬考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(本小題滿分12分)

已知函數(shù)為常數(shù)),直線l與函數(shù)的圖象都相切,且l與函數(shù)的圖象的切點(diǎn)的橫坐標(biāo)為l.

(Ⅰ)求直線l的方程及a的值;

(Ⅱ)當(dāng)k>0時,試討論方程的解的個數(shù).

 

查看答案和解析>>

同步練習(xí)冊答案