(本題滿分15分) 如圖,已知正方形和矩形所在的平面互相垂直,,,是線段的中點.
(Ⅰ)求證://平面;
(Ⅱ)求二面角的大小;
(Ⅲ)試在線段上確定一點,使得與所成的角是.
(Ⅰ)見解析;(Ⅱ)60º。(Ⅲ)點P是AC的中點。
【解析】本題考查直線與平面平行,二面角的知識,考查空間想象能力,邏輯思維能力,是中檔題。
(1)要證AM∥平面BDE,直線證明直線AM平行平面BDE內(nèi)的直線OE即可,也可以利用空間直角坐標(biāo)系,求出向量AM ,在平面BDE內(nèi)求出向量 NE ,證明二者共線,說明AM∥平面BDE,
(2)在平面AFD中過A作AS⊥DF于S,連接BS,說明∠BSA是二面角A-DF-B的平面角,然后求二面角A-DF-B的大;也可以建立空間直角坐標(biāo)系,求出
NE • DB =0, NE • NF =0說明 NE 是平面DFB的法向量,求出平面DAF的法向量 AB =(- 2 ,0,0),然后利用數(shù)量積求解即可.
(3)點P是AC的中點時,滿足PF和CD所成的角是60º,運用向量的方法證明。
解: (Ⅰ)記AC與BD的交點為O,連接OE, ∵O、M分別是AC、EF的中點,ACEF是矩形,∴四邊形AOEM是平行四邊形,∴AM∥OE!平面BDE, 平面BDE,
∴AM∥平面BDE。
(Ⅱ)在平面AFD中過A作AS⊥DF于S,連結(jié)BS,∵AB⊥AF, AB⊥AD, ∴AB⊥平面ADF,∴AS是BS在平面ADF上的射影,由三垂線定理得BS⊥DF!唷螧SA是二面角A—DF—B的平面角。
在RtΔASB中,∴
∴二面角A—DF—B的大小為60º。
(Ⅲ)設(shè)CP=t(0≤t≤2),作PQ⊥AB于Q,則PQ∥AD,
∵PQ⊥AB,PQ⊥AF,,∴PQ⊥平面ABF,平面ABF,∴PQ⊥QF。
在RtΔPQF中,∠FPQ=60º,PF=2PQ!擀AQ為等腰直角三角形,∴
又∵ΔPAF為直角三角形,∴,∴
所以t=1或t=3(舍去)即點P是AC的中點。
方法二
(Ⅰ)建立如圖所示的空間直角坐標(biāo)系。
設(shè),連接NE,則點N、E的坐標(biāo)分別是(、(0,0,1), ∴NE=(, 又點A、M的坐標(biāo)分別是 ()、( ∴ AM=(∴NE=AM且NE與AM不共線,∴NE∥AM。
又∵平面BDE, 平面BDE,∴AM∥平面BDF。
(Ⅱ)∵AF⊥AB,AB⊥AD,AF∴AB⊥平面ADF。∴為平面DAF的法向量!逳E·DB=(·=0,∴NE·NF=(·=0得NE⊥DB,NE⊥NF,∴NE為平面BDF的法向量!郼os<AB,NE>=∴AB與NE的夾角是60º。即所求二面角A—DF—B的大小是60º。
(Ⅲ)設(shè)P(t,t,0)(0≤t≤)得∴CD=(,0,0)又∵PF和CD所成的角是60º。∴解得或(舍去),即點P是AC的中點。
科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省如皋市五校高二下學(xué)期期中考試理科數(shù)學(xué) 題型:解答題
((本題滿分15分)
某有獎銷售將商品的售價提高120元后允許顧客有3次抽獎的機會,每次抽獎的方法是在已經(jīng)設(shè)置并打開了程序的電腦上按“Enter”鍵,電腦將隨機產(chǎn)生一個 1~6的整數(shù)數(shù)作為號碼,若該號碼是3的倍數(shù)則顧客獲獎,每次中獎的獎金為100元,運用所學(xué)的知識說明這樣的活動對商家是否有利。
查看答案和解析>>
科目:2011-2012學(xué)年浙江省招生適應(yīng)性考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
來源:(本題滿分15分)設(shè)函數(shù).
(Ⅰ)若函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,求實數(shù)的最大值;
(Ⅱ)若對任意的,都成立,求實數(shù)的取值范圍.
注:為自然對數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期初摸底文科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知直線與曲線相切
1)求b的值;
2)若方程在上恰有兩個不等的實數(shù)根,求
①m的取值范圍;
②比較的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知拋物線:(),焦點為,直線交拋物線于、兩點,是線段的中點,
過作軸的垂線交拋物線于點,
(1)若拋物線上有一點到焦點的距離為,求此時的值;
(2)是否存在實數(shù),使是以為直角頂點的直角三角形?若存在,求出的值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省六校高三第一次聯(lián)考文科數(shù)學(xué) 題型:解答題
(本題滿分15分)
已知函數(shù)
(1)求的單調(diào)區(qū)間;
(2)設(shè),若在上不單調(diào)且僅在處取得最大值,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com