分析 利用分離常數(shù)法與不等式相結合求函數(shù)的值域.
解答 解:∵函數(shù)y=$\frac{{x}^{2}+4}{x}$=$x+\frac{4}{x}$≥2$\sqrt{x•\frac{4}{x}}$=4,
當且僅當x=2時,取等號.
故得函數(shù)的最小值為4,
利用勾勾函數(shù)的性質可知:
當x在(1,2)時,是單調(diào)遞減,
當x在(2,3)時,是單調(diào)遞增,
當x=1時,y=5,
當x=3時,y=$\frac{13}{3}$.
故函數(shù)y的最大值為5.
所以y=$\frac{{x}^{2}+4}{x}$(1≤x≤3)的值域為[4,5].
故答案為:[4,5].
點評 本題考查了函數(shù)值域的求法.高中函數(shù)值域求法有:1、觀察法,2、配方法,3、反函數(shù)法,4、判別式法;5、換元法,6、數(shù)形結合法,7、不等式法,8、分離常數(shù)法,9、單調(diào)性法,10、利用導數(shù)求函數(shù)的值域,11、最值法,12、構造法,13、比例法.要根據(jù)題意選擇.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{4}{5}$ | C. | 2 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | log0.56>log0.54 | B. | 90.9>270.48 | C. | ${2.5^0}<{\frac{1}{2}^{2.5}}$ | D. | 0.60.5>0.60.3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com