已知點(diǎn)A(0,
3
)和圓O1:x2+(y+
3
2=16,點(diǎn)M在圓O1上運(yùn)動(dòng),點(diǎn)P在半徑O1M上,且|PM|=|PA|,則動(dòng)點(diǎn)P的軌跡方程為
 
考點(diǎn):軌跡方程
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)題意,可得|O1P|+|PA|=|O1M|=4,得到P的軌跡是以點(diǎn)A(0,
3
),O1(0,-
3
)為焦點(diǎn)的橢圓.根據(jù)橢圓的基本概念求出橢圓方程,即可得到動(dòng)點(diǎn)P的軌跡方程.
解答: 解:由題意,可得圓O1:x2+(y+
3
2=16是以O(shè)1(0,-
3
)為圓心,半徑r=4的圓
∵點(diǎn)P在半徑O1M上,且|PM|=|PA|,
∴|O1P|+|PA|=|O1P|+|PM|=|O1M|=4,
可得點(diǎn)P到A(0,
3
),O1(0,-
3
)的距離之和為4(常數(shù))
因此,點(diǎn)P的軌跡是以點(diǎn)A(0,
3
),O1(0,-
3
)為焦點(diǎn)的橢圓,
∵焦點(diǎn)在y軸上,c=
3
且2a=4,
∴a=2得a2=4,b2=a2-c2=4-3=1,
∴橢圓方程為x2+
y2
4
=1

綜上所述,點(diǎn)P的軌跡方程為x2+
y2
4
=1

故答案為:x2+
y2
4
=1
點(diǎn)評(píng):本題給出圓O1上動(dòng)點(diǎn)P和定點(diǎn)A,求點(diǎn)P的軌跡方程,著重考查了橢圓的標(biāo)準(zhǔn)方程和動(dòng)點(diǎn)軌跡方程的求法等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|log3x≤1},N={x|x2-2x<0},則(  )
A、M=NB、M∩N=∅
C、M∩N=RD、N⊆M

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=-x2+ax+3(a>0).
(1)求函數(shù)y=f(x)最大值;
(2)若函數(shù)在(0,3)上有零點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于給定的正數(shù)a,有一個(gè)最大的正數(shù)l(a),使得在整個(gè)區(qū)間[0,l(a)]上,不等式|f(x)|≤5都成立,求l(a)表達(dá)式,并求函數(shù)l(a)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x+1是5和7的等差中項(xiàng),則x的值為( 。
A、5B、6C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中,a1+a4+a7=39,a2+a5+a8=33,則a6的值為( 。
A、10B、9C、8D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sinx(sinx+cosx).
(1)求函數(shù)f(x)的最大值及相應(yīng)的x值;
(2)試敘述:函數(shù)y=f(x)的圖象可由函數(shù)y=sinx的圖象經(jīng)過(guò)怎樣的變換而得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(an,-1),
b
=(2,an+1),n∈N*且a1=2,
a
b
,則數(shù)列{an}的前n項(xiàng)和為Sn=( 。
A、2n+1-2
B、2-2n+1
C、2n+1
D、3n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2
34
632
-lg
1
100
+3log32
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x-3
log2(4-x)
的定義域是(  )
A、(3,4)
B、[3,4)
C、(3,4]
D、[3,4]

查看答案和解析>>

同步練習(xí)冊(cè)答案