已知函數(shù)f(x)=ax3-6ax2+b,問(wèn)是否存在實(shí)數(shù)a,b使f(x)在[-1,2]上取得最大值3,最小值-29.若存在,求出a,b的值,并指出函數(shù)的單調(diào)區(qū)間;若不存在,請(qǐng)說(shuō)明理由.

答案:
解析:

  解  當(dāng)a≠0時(shí),(x)=3ax2-12ax=3a(x2-4x).令(x)=0,得x=0,或x=4[-1,2]

  (1)當(dāng)a>0時(shí),如下表

  ∴當(dāng)x=0時(shí),f(x)取得最大值,∴b=3.

  (2)當(dāng)a<0時(shí),如下表

  ∴當(dāng)x=0時(shí),取得最小值,∴b=-29.

  又f(2)=-16a-29,f(-1)=-7a-29<f(2),

  ∴當(dāng)x=2時(shí),f(x)取得最大值,∴-16a-29=3,a=-2,

  綜上,a=2,b=3或a=-2,b=-29.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省南昌市高一5月聯(lián)考數(shù)學(xué)卷(解析版) 題型:解答題

已知函數(shù)f(x)= (a、b為常數(shù)),且方程f(x)-x+12=0有兩個(gè)實(shí)根為x1=3,x2=4.

(1)求函數(shù)f(x)的解析式;

(2)設(shè)k>1,解關(guān)于x的不等式f(x)< .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆遼寧盤(pán)錦市高一第一次階段考試數(shù)學(xué)試卷(解析版) 題型:解答題

(12分)已知函數(shù)f(x)= (a,b為常數(shù),且a≠0),滿足f(2)=1,方程f(x)=x有唯一實(shí)數(shù)解,求函數(shù)f(x)的解析式和f[f(-4)]的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省萊蕪市高三上學(xué)期10月測(cè)試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分l2分)

已知函數(shù)f(x)=a

 

(1)求證:函數(shù)yf(x)在(0,+∞)上是增函數(shù);

 

(2)f(x)<2x在(1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省十二校高三第一次聯(lián)考數(shù)學(xué)文卷 題型:解答題

( (本小題滿分13分)

已知函數(shù)f(x)=(a-1)xaln(x-2),(a<1).

(1)討論函數(shù)f(x)的單調(diào)性;

(2)設(shè)a<0時(shí),對(duì)任意x1、x2∈(2,+∞),<-4恒成立,求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆黑龍江省高一期末考試文科數(shù)學(xué) 題型:解答題

(12分)已知函數(shù)f(X)=㏒a(ax-1) (a>0且a≠1)

     (1)求函數(shù)的定義域   (2)討論函數(shù)f(X)的單調(diào)性

 

查看答案和解析>>

同步練習(xí)冊(cè)答案