10.已知某幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個(gè)幾何體的體積是$\frac{4}{3}$.

分析 由三視圖知該幾何體是四棱錐,由三視圖求出幾何元素的長(zhǎng)度,由錐體的體積公式求出幾何體的體積.

解答 解:根據(jù)三視圖可知幾何體是四棱錐,
其中底面是以2為邊長(zhǎng)的正方形,四棱錐的高是1,
∴幾何體的體積V=$\frac{1}{3}×2×2×1$=$\frac{4}{3}$,
故答案為:$\frac{4}{3}$.

點(diǎn)評(píng) 本題考查了由三視圖求幾何體的體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.運(yùn)行如圖框圖中程序,輸出的結(jié)果是( 。
A.30B.31C.32D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知直線l過(guò)點(diǎn)P(2,3),且被兩條平行直線l1:3x+4y-7=0,l2:3x+4y+8=0截得的線段長(zhǎng)為d.
(1)求d得最小值;并求直線的方程;
(2)當(dāng)直線l與x軸平行,試求d的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)$f(x)=({\sqrt{3}sinωx+cosωx})cosωx-\frac{1}{2}({x∈R,ω>0})$.若f(x)的最小正周期為4π.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且滿足(2a-c)cosB=bcosC,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.方程lnx=-x+3的根所在的區(qū)間是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某大學(xué)餐飲中心為了解新生的飲食習(xí)慣,在全校一年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,共調(diào)查了100位學(xué)生,其中80位南方學(xué)生20位北方學(xué)生.南方學(xué)生中有60位喜歡甜品,20位不喜歡;北方學(xué)生中有10位喜歡甜品,10位不喜歡.
(Ⅰ)根據(jù)以上數(shù)據(jù)繪制一個(gè)2×2的列聯(lián)表;
(Ⅱ)根據(jù)列聯(lián)表表中數(shù)據(jù),問(wèn)是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”.
P(K2≥k00.100.050.010.005
k02.7063.8416.6357.879
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=ax3-3x2+1(a∈R),求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.過(guò)拋物線y2=4x的焦點(diǎn)作直線交拋物線于A(x1,y1)、B(x2,y2)兩點(diǎn),若x1+x2=10,則弦AB的長(zhǎng)度為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.觀察以下各等式:
sin210°+sin270°+sin2130°=$\frac{3}{2}$
sin220°+sin280°+sin2140°=$\frac{3}{2}$
sin230°+sin290°+sin2150°=$\frac{3}{2}$
分析上述各式的共同特點(diǎn),猜想出反映一般規(guī)律的等式,并對(duì)等式的正確性作出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案