【題目】下面給出了2010年亞洲一些國家的國民平均壽命(單位:歲)
國家 平均壽命 | 國家 平均壽命 | 國家 平均壽命 | 國家 平均壽命 | 國家 平均壽命 |
阿曼 76.1 | 泰國 73.7 | 阿富汗 59.0 | 尼泊爾 68.0 | 孟加拉國 70.1 |
(1)請(qǐng)補(bǔ)齊頻率分布表,并求出相應(yīng)頻率分布直方圖中的a,b;
分組 | 頻數(shù) | 頻率 |
[59.0,63.0) | 2 | 0.05 |
[63.0,67.0) | ||
[67.0,71.0) | ||
[71.0,75.0) | 9 | 0.225 |
[75.0,7.0) | 7 | 0.175 |
[79.0,83.0] | 5 | 0.125 |
合計(jì) | 40 | 1.00 |
(2)請(qǐng)根據(jù)統(tǒng)計(jì)思想,利用(1)中的頻率分布直方圖估計(jì)亞洲人民的平均壽命.
【答案】
(1)6;0.15;11;0.275
(2)解:由頻率分布直方圖可知,
以上所有國家的國民平均壽命的平均數(shù)約為
=61×0.05+65×0.15+69×0.275+73×0.225+77×0.175+81×0.125=71.8;
根據(jù)統(tǒng)計(jì)思想,估計(jì)亞洲人民的平均壽命大約為71.8歲.
【解析】(1)根據(jù)題意,計(jì)算[63.0,67.0)的頻數(shù)是6,頻率是 =0.15;
[67.0,71.0)的頻數(shù)是11,頻率是 =0.275,補(bǔ)齊頻率分布表如下;
分組 | 頻數(shù) | 頻率 |
[59.0,63.0) | 2 | 0.05 |
[63.0,67.0) | 6 | 0.15 |
[67.0,71.0) | 11 | 0.275 |
[71.0,75.0) | 9 | 0.225 |
[75.0,7.0) | 7 | 0.175 |
[79.0,83.0] | 5 | 0.125 |
合計(jì) | 40 | 1.00 |
計(jì)算a= =0.05625,
b= =0.04375;
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解頻率分布直方圖的相關(guān)知識(shí),掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1 , 則下列四個(gè)命題:
①P在直線BC1上運(yùn)動(dòng)時(shí),三棱錐A﹣D1PC的體積不變;
②P在直線BC1上運(yùn)動(dòng)時(shí),直線AP與平面ACD1所成角的大小不變;
③P在直線BC1上運(yùn)動(dòng)時(shí),二面角P﹣AD1﹣C的大小不變;
④M是平面A1B1C1D1上到點(diǎn)D和C1距離相等的點(diǎn),則M點(diǎn)的軌跡是過D1點(diǎn)的直線
其中真命題的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AB=2,AD=1,在矩形ABCD的邊CD上隨機(jī)取一點(diǎn)E,記“△AEB的最大邊是AB”為事件M,則P(M)等于( )
A.2﹣
B. ﹣1
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】本公司計(jì)劃2018年在甲、乙兩個(gè)電視臺(tái)做總時(shí)間不超過300分鐘的廣告,廣告總費(fèi)用不超過9萬元,甲、乙電視臺(tái)的廣告收費(fèi)標(biāo)準(zhǔn)分別為元/分鐘和200元/分鐘,規(guī)定甲、乙兩個(gè)電視臺(tái)為該公司所做的每分鐘廣告,能給公司事來的收益分別為0.3萬元和0.2萬元.問該公司如何分配在甲、乙兩個(gè)電視臺(tái)的廣告時(shí)間,才能使公司的收益最大,最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C1:x2+y2=4與圓C2:(x﹣1)2+(y﹣3)2=4,過動(dòng)點(diǎn)P(a,b)分別作圓C1、圓C2的切線PM,PN,(M,N分別為切點(diǎn)),若|PM|=|PN|,則a2+b2﹣6a﹣4b+13的最小值是( )
A.5
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為貫徹落實(shí)教育部6部門《關(guān)于加快發(fā)展青少年校園足球的實(shí)施意見》,全面提高我市中學(xué)生的體質(zhì)健康水平,培養(yǎng)拼搏意識(shí)和團(tuán)隊(duì)精神,普及足球知識(shí)和技能,市教體局決定舉行春季校園足球聯(lián)賽.為迎接此次聯(lián)賽,甲中學(xué)選拔了20名學(xué)生組成集訓(xùn)隊(duì),現(xiàn)統(tǒng)計(jì)了這20名學(xué)生的身高,記錄入如表:(設(shè)ξ為隨機(jī)變量)
身高(cm) | 168 | 174 | 175 | 176 | 178 | 182 | 185 | 188 |
人數(shù) | 1 | 2 | 4 | 3 | 5 | 1 | 3 | 1 |
(1)請(qǐng)計(jì)算這20名學(xué)生的身高的中位數(shù)、眾數(shù),并補(bǔ)充完成下面的莖葉圖;
(2)身高為185cm和188cm的四名學(xué)生分別記為A,B,C,D,現(xiàn)從這四名學(xué)生選2名擔(dān)任正副門將,請(qǐng)利用列舉法列出所有可能情況,并求學(xué)生A入選門將的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在坐標(biāo)原點(diǎn)的橢圓C經(jīng)過點(diǎn)A(2,3),且點(diǎn)F (2,0)為其右焦點(diǎn).
(1)求橢圓C的方程和離心率e;
(2)若平行于OA的直線l與橢圓有公共點(diǎn),求直線l在y軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知()的最小值為.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)在中,內(nèi)角, , 的對(duì)邊分別為, , ,且,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com