A. | 偶函數(shù)且它的圖象關于點(π,0)對稱 | |
B. | 偶函數(shù)且它的圖象關于點$({\frac{3π}{2},0})$對稱 | |
C. | 奇函數(shù)且它的圖象關于點$({\frac{3π}{2},0})$對稱 | |
D. | 奇函數(shù)且它的圖象關于點(π,0)對稱 |
分析 由題意可得f($\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$a+$\frac{\sqrt{2}}{2}$b=-$\sqrt{{a}^{2}{+b}^{2}}$,求得a=b,由此化簡函數(shù)$g(x)=f({\frac{3π}{4}-x})$ 的解析式為$\sqrt{2}$a•sinx,從而得出結論.
解答 解:∵函數(shù)f(x)=asinx+bcosx(a,b為常數(shù),a≠0)在x=$\frac{π}{4}$處取得最小值,
∴f($\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$a+$\frac{\sqrt{2}}{2}$b=-$\sqrt{{a}^{2}{+b}^{2}}$,∴$\frac{1}{2}$(a2+b2+2ab)=a2+b2,∴(a-b)2=0,a=b.
函數(shù)$g(x)=f({\frac{3π}{4}-x})$=asin($\frac{3π}{4}$-x)+bcos($\frac{3π}{4}$-x)=a($\frac{\sqrt{2}}{2}$cosx+$\frac{\sqrt{2}}{2}$sinx)+a(-$\frac{\sqrt{2}}{2}$cosx+$\frac{\sqrt{2}}{2}$sinx)=$\sqrt{2}$a•sinx,
故g(x)是奇函數(shù),且函數(shù)的圖象關于點點(π,0)對稱,
故選:D.
點評 本題主要考查三角函數(shù)的圖象的對稱性,正弦函數(shù)的圖象特征,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1+i | B. | 1-i | C. | 1-2i | D. | -1+i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{2}$ | C. | 1 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | k<5? | B. | k≤5? | C. | k>7? | D. | k≤6? |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | fp[f(0)]=f[fp(0)] | B. | fp[f(1)]=f[fp(1)] | C. | fp[fp(2)]=f[f(2)] | D. | fp[f(3)]=f[f(3)] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com