A. | (0,+∞) | B. | (0,1) | C. | (0,$\frac{1}{2}$) | D. | [1,+∞) |
分析 求函數(shù)的導數(shù),利用導數(shù)構造函數(shù),判斷函數(shù)的單調性即可.
解答 解:函數(shù)y=ln(x+b)的導數(shù)為y′=$\frac{1}{x+b}$=1,x=1-b,切點為(1-b,0),代入y=x-a,得a+b=1,
∵a、b為正實數(shù),∴a∈(0,1),
則$\frac{{a}^{2}}{2-b}$=$\frac{{a}^{2}}{1+a}$,
令g(a)=$\frac{{a}^{2}}{1+a}$,則g′(a)=$\frac{a(a+2)}{(1+a)^{2}}$>0,
則函數(shù)g(a)為增函數(shù),
∴$\frac{{a}^{2}}{2-b}$∈(0,$\frac{1}{2}$).
故選:C.
點評 本題主要考查導數(shù)的應用,利用導數(shù)的幾何意義以及函數(shù)單調性和導數(shù)之間的關系是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | -2 | C. | -$\frac{5}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com