分析 (1)由題意和余弦定理求出cosD的值,由平方關(guān)系和內(nèi)角的范圍求出sinD,代入三角形的面積公式求解;
(2)由AC=BC=2得∠BAC=B,由內(nèi)角和定理求出∠ACB=π-2B,由正弦定理列出方程后,利用誘導(dǎo)公式和二倍角正弦公式化簡(jiǎn)后,即可求出AB的值.
解答 解:(1)因?yàn)锳D=1,CD=3,AC=2$\sqrt{3}$,
所以由余弦定理得,cosD=$\frac{A{D}^{2}+D{C}^{2}-A{C}^{2}}{2•AD•DC}$=$\frac{1+9-12}{2×1×3}$=$-\frac{1}{3}$,
因?yàn)镈∈(0,π)所以sinD=$\sqrt{1-co{s}^{2}D}$=$\frac{2\sqrt{2}}{3}$
又AD=1,CD=3,
所以△ACD的面積S=$\frac{1}{2}×1×3×\frac{2\sqrt{2}}{3}$=$\sqrt{2}$…(6分)
(2)∵AC=BC=2$\sqrt{3}$,
∴∠BAC=B,則∠ACB=π-2B,
由正弦定理得,$\frac{AB}{sin∠ACB}=\frac{AC}{sinB}$,
則$\frac{AB}{sin2B}=\frac{AC}{sinB}$,即$\frac{AB}{2sinBcosB}=\frac{AC}{sinB}$,
又cosB=$\frac{{\sqrt{3}}}{3}$,所以AB=AC•cosB=2×$2\sqrt{3}×\frac{\sqrt{3}}{3}$=4.…(12分)
點(diǎn)評(píng) 本題考查了正弦定理、余弦定理,誘導(dǎo)公式和二倍角正弦公式等,以及三角形的面積公式的應(yīng)用,考查化簡(jiǎn)、計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,+∞) | B. | (0,1) | C. | (0,$\frac{1}{2}$) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | -3 | C. | 5 | D. | -5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com