(2012•寶山區(qū)一模)已知△ABC三條邊分別為a,b,c,A,B,C成等差數(shù)列,若b=2,則a+c的最大值為
4
4
分析:由A,B,C成等差數(shù)列,可知B=
π
3
,A+C=
3
,利用正弦定理可得2R=
b
sinB
,a+c=2R(sinA+sin(
3
-A)),展開后利用輔助角公式即可求得a+c的最大值.
解答:解:∵△ABC中A,B,C成等差數(shù)列,
∴B=
π
3
,A+C=
3
,又b=2,設(shè)其外接圓的直徑為2R,
由正弦定理得:
a
sinA
=
c
sinC
=
b
sinB
=
2
3
2
=
4
3
,
∴a+c=(sinA+sinC)•
4
3

=
4
3
[sinA+sin(
3
-A)]
=
4
3
[sinA+
3
2
cosA-(-
1
2
)sinA]
=
4
3
3
sin(A+
π
6
)≤4•1=4(當A=
π
3
時取“=”).
故答案為:4.
點評:本題考查等差數(shù)列的性質(zhì),考查正弦定理,考查三角函數(shù)的化簡與求值,屬于數(shù)列與三角的綜合應(yīng)用,考查綜合分析問題、解決問題的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•寶山區(qū)一模)兩個圓錐有等長的母線,它們的側(cè)面展開圖恰好拼成一個圓,若它們的側(cè)面積之比為1:2,則它們的體積比是
1:
10
1:
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•寶山區(qū)一模)設(shè)f(x)是定義在R上的奇函數(shù),且滿足f(x+3)=f(x),f(1)>1,f(2)=
2m-3
m+1
,則實數(shù)m的取值范圍是
(-1,
2
3
(-1,
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•寶山區(qū)一模)已知函數(shù)f(x)=log2x,若2,f(a1),f(a2),f(a3),…,f(an),2n+4,…,(n∈N*)成等差數(shù)列.
(1)求數(shù)列{an}(n∈N*)的通項公式;
(2)設(shè)g(k)是不等式log2x+log2(3
ak
-x
)≥2k+3(k∈N*)整數(shù)解的個數(shù),求g(k);
(3)記數(shù)列{
12
an
}
的前n項和為Sn,是否存在正數(shù)λ,對任意正整數(shù)n,k,使Sn
ak
<λ2恒成立?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•寶山區(qū)一模)已知等差數(shù)列{an},a2=-2,a6=4,則a4=
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•寶山區(qū)一模)方程x2-2x+5=0的復(fù)數(shù)根為
1±2i
1±2i

查看答案和解析>>

同步練習冊答案