已知|
a
|=3,|
b
|=2,
a
b
的夾角為60°,則|2
a
+
b
|=
 
考點:數(shù)量積表示兩個向量的夾角
專題:平面向量及應(yīng)用
分析:把已知條件代入向量的模長公式,計算可得.
解答: 解:∵|
a
|=3,|
b
|=2,
a
b
的夾角為60°,
∴|2
a
+
b
|=
(2
a
+
b
)2
=
4
a
2
+4
a
b
+
b
2

=
32+4×3×2×
1
2
+22
=2
13

故答案為:2
13
點評:本題考查平面向量的數(shù)量積與夾角,涉及模長公式,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)是定義在R上的奇函數(shù),當(dāng)x<0時,f(x)=x(1-x),則當(dāng)x≥0時,函數(shù)f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等軸雙曲線的一個焦點是F1(-6,0),則它的標(biāo)準(zhǔn)方程是( 。
A、x2-y2=-18
B、x2-y2=18
C、x2-y2=-8
D、x2-y2=8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二項式(1-
x
2
)9
的展開式中第4項的系數(shù)等于
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x|m-x|(x∈R),且f(4)=0.
(1)求實數(shù)m的值;
(2)作出函數(shù)f(x)的圖象;
(3)根據(jù)圖象寫出不等式f(x)>0的解集
(4)求當(dāng)x∈[1,5)時函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|
x-1
x+1
≥0}
B={x||x-1|<3},則A∩B=( 。
A、(-2,-1)
B、[1,4)
C、(-2,-1)∪[1,4)
D、(-2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-1,x≤1
1+log2x,x>1
則函數(shù)f(x)的零點為(  )
A、
1
2
,0
B、-2,0
C、
1
2
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心在坐標(biāo)原點,且與直線l1:x-y-2
2
=0相切.
(1)求直線l2:4x-3y+5=0被圓C所截得的弦AB的長;
(2)過點G(1,3)作兩條與圓C相切的直線,切點分別為M,N,求直線MN的方程;
(3)若與直線l1垂直的直線l過點R(1,-1),且與圓C交于不同的兩點P,Q.若∠PRQ為鈍角,求直線l的縱截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線f(x)=acos x與曲線 g(x)=x2+bx+1在交點(0,m)處有公切線,則a-b=( 。
A、-1B、0C、1D、2

查看答案和解析>>

同步練習(xí)冊答案