若f(x)是定義在R上的奇函數(shù),當(dāng)x<0時,f(x)=x(1-x),則當(dāng)x≥0時,函數(shù)f(x)的解析式為
 
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:f(x)是定義在R上的奇函數(shù),得定義f(-x)=-f(x),設(shè)x>0時,則-x<0,
轉(zhuǎn)化為x<0時,f(x)=x(1-x)求解,注意別忘了x=0,
解答: 解:∵f(x)是定義在R上的奇函數(shù),∴f(-x)=-f(x),
x=0時f(0)=,
0當(dāng)x<0時,f(x)=x(1-x),
設(shè)x>0時,則-x<0,
f(x)=-f(-x)=-[-x(1+x)]=x(1+x),
綜上當(dāng)x≥0時,函數(shù)f(x)=x(1+x),
故答案為:f(x)=x(1+x),
點評:本題考查了奇函數(shù)的定義,性質(zhì),運用求解析式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=cos2x+2
3
sinxcosx(0≤x≤
π
2

(1)求函數(shù)f(x)的最大值,并指明取到最大值時對應(yīng)的x的值;
(2)若0<θ<
π
6
,且f(θ)=
4
3
,計算cos2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=1,an+1=
an
2an+1
,n∈N*,則通項an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=
2
3
,且對任意的正整數(shù)m,n,都有am+n=am•an,則{an}前n項和Sn等于(  )
A、2-(
2
3
)n-1
B、2-(
2
3
)n
C、2-
2n
3n+1
D、2-
2n+1
3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=2,an+1=an+cn(c是常數(shù)),且a1,a2,a3成公比不為1的等比數(shù)列,則a4=( 。
A、4B、8C、10D、14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列4個命題:
①“如果x+y=0,則x、y互為相反數(shù)”的逆命題
②“如果x2+x-6≥0,則x>2”的否命題
③在△ABC中,“A>30°”是“sinA>
1
2
”的充分不必要條件
④“函數(shù)f(x)=tan(x+φ)為奇函數(shù)”的充要條件是“φ=kπ(k∈Z)”
其中真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的公比為q=-
1
2
.若a3=
1
4
,求數(shù)列{an}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-(x-1)2,其中a為實常數(shù).
(1)若對任意x∈(0,1),都有f(x)>f(1),求a的取值范圍;
(2)若關(guān)于x的不等式f(x)>0的解集中恰有兩個整數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=3,|
b
|=2,
a
b
的夾角為60°,則|2
a
+
b
|=
 

查看答案和解析>>

同步練習(xí)冊答案