A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
分析 根據(jù)橢圓的定義,結合三角形的周長和離心率求出a,c即可得到結論.
解答 解:設橢圓的焦距為2c,
∵△PF1F2的周長為6,∴2a+2c=6,
∵橢圓的離心率為$\frac{1}{2}$,∴$\frac{c}{a}=\frac{1}{2}$,
由$\left\{\begin{array}{l}2a+2c=6\\ \frac{c}{a}=\frac{1}{2}\end{array}\right.$,解得$\left\{\begin{array}{l}a=2\\ c=1\end{array}\right.$,
則橢圓上的點到橢圓焦點的最小距離為a-c=2-1=1.
故選:B
點評 本題主要考查橢圓的方程和性質(zhì),根據(jù)橢圓的定義以及離心率建立方程關系求出a,c是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com