14.已知函數(shù)$f(x)=\frac{1}{3}{x^3}+a{x^2}+bx$在x=-1時(shí)取得極大值$\frac{5}{3}$,則ab=( 。
A.-15B.15C.-3D.3

分析 求出函數(shù)的導(dǎo)數(shù),根據(jù)f(x)在x=-1時(shí)取得極大值$\frac{5}{3}$,得到關(guān)于a,b的方程組,解出即可.

解答 解:∵$f(x)=\frac{1}{3}{x^3}+a{x^2}+bx$,
∴f′(x)=x2+2ax+b,
若f(x)在x=-1時(shí)取極大值,
則f′(-1)=1-2a+b=0且f(-1)=-$\frac{1}{3}$+a-b=$\frac{5}{3}$,
解得:a=-1,b=-3,
故ab=3,
故選:D.

點(diǎn)評(píng) 本題考查了函數(shù)的極值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.正方體ABCD-A1B1C1D1,6個(gè)面的中心分別為E,F(xiàn),G,H,I,J,甲從這6個(gè)點(diǎn)鐘任選兩個(gè)點(diǎn)連成直線,乙也從這6個(gè)點(diǎn)鐘任選兩個(gè)點(diǎn)連成直線,則所得的兩條直線互相垂直的概率$\frac{1}{75}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)集合A={x|$\frac{2x-1}{x-2}$≤0},B={x||x|<1},則A∪B=( 。
A.[-$\frac{1}{2}$,1)B.(-1,1)∪(1,2)C.(-1,2)D.[-$\frac{1}{2}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知角α的終邊過(guò)點(diǎn)P(1,-3),
(Ⅰ)求sinα,cosα,tanα的值
(Ⅱ)求$\frac{sinα}{{cosα\sqrt{1+{{tan}^2}α}}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)f(x)=cos(x+φ)(0≤φ≤π)的定義域?yàn)镽,若f(x)為奇函數(shù),則φ=( 。
A.0B.$\frac{π}{4}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.從混有5張假幣的20張50元人民幣中任意抽取2張,將其中1張?jiān)隍?yàn)鈔機(jī)上檢驗(yàn)發(fā)現(xiàn)是假幣,則這兩張都是假幣的概率為$\frac{2}{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列敘述正確的是( 。
A.第一或第二象限的角都可作為三角形的內(nèi)角
B.鈍角比第三象限的角小
C.第四象限的角一定是負(fù)角
D.始邊相同而終邊不同的角一定不相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.i為虛數(shù)單位,則$\frac{2}{1+i}$+i=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.?dāng)?shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和為Sn,滿足關(guān)系3Sn-5Sn-1=3(n≥2)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)函數(shù)$f(x)=\frac{2x+3}{3x}$,作數(shù)列{bn},使b1=1,${b_n}=f(\frac{1}{{{b_{n-1}}}})$.(n≥2)求bn的通項(xiàng)公式
(3)求Tn=(b1b2-b2b3)+(b3b4-b4b5)+…+(b2n-1b2n-b2nb2n+1)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案