函數(shù)y=cos2x-2sinx在區(qū)間[-
3
,
3
]上的最大值為
 
考點(diǎn):三角函數(shù)的最值
專題:三角函數(shù)的求值
分析:由條件利用正弦函數(shù)的定義域和值域求得sinx的范圍,再利用二次函數(shù)的性質(zhì)求得函數(shù)y=2-(sinx+1)2 的最大值.
解答: 解:函數(shù)y=cos2x-2sinx=1-sin2x-2sinx=2-(sinx+1)2,在區(qū)間[-
3
,
3
]上,sinx∈[-1,1],
故當(dāng)sinx=-1時(shí),函數(shù)y取得最大值為2,
故答案為:2.
點(diǎn)評(píng):本題主要考查正弦函數(shù)的定義域和值域,二次函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(
3
sinx,1),
b
=(cosx,2).
(1)若
a
b
,求tan2x的值;
(2)若f(x)=(
a
-
b
)•
b
,求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,且AD=
1
3
AC,AE=
2
3
AB,BD,CE相交于點(diǎn)F.
(I)求證:A,E,F(xiàn),D四點(diǎn)共圓;
(Ⅱ)若正三角形ABC的邊長為3,求A,E,F(xiàn),D所在圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知點(diǎn)P(4,0),Q(0,4),M,N分別是x軸和y軸上的動(dòng)點(diǎn),若以MN為直徑的圓C與直線PQ相切,當(dāng)圓C的面積最小時(shí),在四邊形MPQN內(nèi)任取一點(diǎn),則這點(diǎn)落在圓C內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列直線與雙曲線的交點(diǎn)坐標(biāo):
(1)2x-y-10=0,
x2
20
-
y2
5
=1;
(2)4x-3y-16=0,
x2
25
-
y2
16
=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高校在今年的自主招生考試成績中隨機(jī)抽取100名考生的筆試成績,分為5組制出頻率分布直方圖如圖所示.
組別成績人數(shù)頻率
1[75,80)50.05
2[80,85)350.35
3[85,90)ab
4[90,95)cd
5[95,100)100.1
(1)求a,b,c,d的值;
(2)該校決定在成績較好的3、4、5組用分層抽樣抽取6名學(xué)生進(jìn)行面試,則每組應(yīng)各抽多少名學(xué)生?
(3)在(2)的前提下,已知面試有4位考官,被抽到的6名學(xué)生中有兩名被指定甲考官面試,其余4名則隨機(jī)分配給3位考官中的一位對(duì)其進(jìn)行面試,求這4名學(xué)生分配到的考官個(gè)數(shù)X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知an+1+an=4n-3(n∈N*),當(dāng)a1=2時(shí),求an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC的兩內(nèi)角A、B滿足sinA•cosB<0,試判斷此三角形的形狀?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

分解因式:a4+a2b2-a2c2-a2b2-b4+b2c2

查看答案和解析>>

同步練習(xí)冊(cè)答案