已知P為拋物線上的動(dòng)點(diǎn),點(diǎn)P在x軸上的射影為M,點(diǎn)A的坐標(biāo)是,則|PA|+|PM|的最小值是( )
A.8
B.
C.10
D.
【答案】分析:先根據(jù)拋物線的方程求得焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,延長(zhǎng)PM交準(zhǔn)線于H點(diǎn)推斷出|PA|=|PH|,進(jìn)而表示出|PM|,問(wèn)題轉(zhuǎn)化為求PF|+|PA|的最小值,由三角形兩邊長(zhǎng)大于第三邊可知,|PF|+|PA|>|FA|,直線FA與 拋物線交于P點(diǎn),可得P,分析出當(dāng)P重合于P時(shí),①可取得最小值,進(jìn)而求得|FA|,則|PA|+|PM|的最小值可得.
解答:解:依題意可知焦點(diǎn)F(0,),準(zhǔn)線 y=-,延長(zhǎng)PM交準(zhǔn)線于H點(diǎn).則|PA|=|PH|
|PM|=|PH|-=|PA|-
|PM|+|PA|=|PF|+|PA|-,我們只有求出|PF|+|PA|最小值即可.
由三角形兩邊長(zhǎng)大于第三邊可知,|PF|+|PA|≥|FA|,①
設(shè)直線FA與 拋物線交于P點(diǎn),可計(jì)算得P (3,),另一交點(diǎn)(-,舍去.
當(dāng)P重合于P時(shí),①可取得最小值,可得|FA|=10.
則所求為|PM|+|PA|=
故選B
點(diǎn)評(píng):本題主要考查了拋物線的簡(jiǎn)單性質(zhì).考查了考生分析問(wèn)題的能力,數(shù)形結(jié)合的思想的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年宣武區(qū)質(zhì)量檢一)已知P為拋物線上的動(dòng)點(diǎn),點(diǎn)P在x軸上的射影為M,點(diǎn)A的坐標(biāo)是,則的最小值是                                             (   )

A   8       B          C  10    D 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山西省晉中市昔陽(yáng)中學(xué)高二(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知P為拋物線上的動(dòng)點(diǎn),點(diǎn)P在x軸上的射影為M,點(diǎn)A的坐標(biāo)是,則|PA|+|PM|的最小值是( )
A.8
B.
C.10
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省寧波市寧海縣知恩中學(xué)高二(上)12月段考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知P為拋物線上的動(dòng)點(diǎn),點(diǎn)P在x軸上的射影為M,點(diǎn)A的坐標(biāo)是,則|PA|+|PM|的最小值是( )
A.8
B.
C.10
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省金華市蘭溪一中高二(下)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知P為拋物線上的動(dòng)點(diǎn),點(diǎn)P在x軸上的射影為M,點(diǎn)A的坐標(biāo)是,則|PA|+|PM|的最小值是( )
A.8
B.
C.10
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008年北京市宣武區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:選擇題

已知P為拋物線上的動(dòng)點(diǎn),點(diǎn)P在x軸上的射影為M,點(diǎn)A的坐標(biāo)是,則|PA|+|PM|的最小值是( )
A.8
B.
C.10
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案