已知α、β、γ都是銳角,且tanα=,tanβ=,tanγ=,則tan(α+β+γ)=________.

解析:tan(α+β)=

==,

tan(α+β+γ)===1.

答案:1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知四邊形ABCD為菱形,AB=6,∠BAD=60°,兩個正三棱錐P-ABD、S-BCD(底面是正三角形且頂點在底面上的射影是底面正三角形的中心)的側(cè)棱長都相等,如圖,E、M、N分別在AD、
AB、AP上,且AM=AE=2,AN=
13
AP,MN⊥PE

(Ⅰ)求證:PB⊥平面PAD;
(Ⅱ)求平面BPS與底面ABCD所成銳二面角的平面角的正切
值;
(Ⅲ)求多面體SPABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四邊形為菱形,,兩個正三棱錐(底面是正三角形且頂點在底面上的射影是底面正三角形的中心)的側(cè)棱長都相等,點分別在上,且.

 (Ⅰ)求證:;

(Ⅱ)求平面與底面所成銳二面角的平面角的正切值;

(Ⅲ)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知四邊形ABCD為菱形,AB=6,∠BAD=60°,兩個正三棱錐P-ABD、S-BCD(底面是正三角形且頂點在底面上的射影是底面正三角形的中心)的側(cè)棱長都相等,如圖,E、M、N分別在AD、
AB、AP上,且數(shù)學(xué)公式
(Ⅰ)求證:PB⊥平面PAD;
(Ⅱ)求平面BPS與底面ABCD所成銳二面角的平面角的正切
值;
(Ⅲ)求多面體SPABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年安徽省六校聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知四邊形ABCD為菱形,AB=6,∠BAD=60°,兩個正三棱錐P-ABD、S-BCD(底面是正三角形且頂點在底面上的射影是底面正三角形的中心)的側(cè)棱長都相等,如圖,E、M、N分別在AD、
AB、AP上,且
(Ⅰ)求證:PB⊥平面PAD;
(Ⅱ)求平面BPS與底面ABCD所成銳二面角的平面角的正切
值;
(Ⅲ)求多面體SPABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年安徽省六校高三聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知四邊形ABCD為菱形,AB=6,∠BAD=60°,兩個正三棱錐P-ABD、S-BCD(底面是正三角形且頂點在底面上的射影是底面正三角形的中心)的側(cè)棱長都相等,如圖,E、M、N分別在AD、
AB、AP上,且
(Ⅰ)求證:PB⊥平面PAD;
(Ⅱ)求平面BPS與底面ABCD所成銳二面角的平面角的正切
值;
(Ⅲ)求多面體SPABC的體積.

查看答案和解析>>

同步練習(xí)冊答案