已知函數(shù)f(x)=sin(wx+φ)(w>0,0<φ<π)的周期為π,圖象的一個對稱中心為(,0),將函數(shù)f(x)圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將得到的圖象向右平移個單位長度后得到函數(shù)g(x)的圖象.
(1)求函數(shù)f(x)與g(x)的解析式
(2)是否存在x∈(),使得f(x),g(x),f(x)g(x)按照某種順序成等差數(shù)列?若存在,請確定x的個數(shù),若不存在,說明理由;
(3)求實數(shù)a與正整數(shù)n,使得F(x)=f(x)+ag(x)在(0,nπ)內(nèi)恰有2013個零點.
【答案】分析:(1)依題意,可求得ω=2,φ=,利用三角函數(shù)的圖象變換可求得g(x)=sinx;
(2)依題意,當x∈(,)時,<sinx<,0<cosx<⇒sinx>cos2x>sinxcos2x,問題轉(zhuǎn)化為方程2cos2x=sinx+sinxcos2x在(,)內(nèi)是否有解.通過G′(x)>0,可知G(x)在(,)內(nèi)單調(diào)遞增,而G()<0,G()>0,從而可得答案;
(3)依題意,F(xiàn)(x)=asinx+cos2x,令F(x)=asinx+cos2x=0,方程F(x)=0等價于關(guān)于x的方程a=-,x≠kπ(k∈Z).問題轉(zhuǎn)化為研究直線y=a與曲線y=h(x),x∈(0,π)∪(π,2π)的交點情況.通過其導數(shù),列表分析即可求得答案.
解答:解:(1)∵函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期為π,
∴ω==2,
又曲線y=f(x)的一個對稱中心為,φ∈(0,π),
故f()=sin(2×+φ)=0,得φ=,所以f(x)=cos2x.
將函數(shù)f(x)圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變)后可得y=cosx的圖象,
再將y=cosx的圖象向右平移個單位長度后得到函數(shù)g(x)=cos(x-)的圖象,
∴g(x)=sinx.
(2)當x∈()時,<sinx<,0<cosx<,
∴sinx>cos2x>sinxcos2x,
問題轉(zhuǎn)化為方程2cos2x=sinx+sinxcos2x在(,)內(nèi)是否有解.
設(shè)G(x)=sinx+sinxcos2x-cos2x,x∈(,),
則G′(x)=cosx+cosxcos2x+2sin2x(2-sinx),
∵x∈(,),
∴G′(x)>0,G(x)在()內(nèi)單調(diào)遞增,
又G()=-<0,G()=>0,且G(x)的圖象連續(xù)不斷,故可知函數(shù)G(x)在()內(nèi)存在唯一零點x,即存在唯一零點x∈(,)滿足題意.
(3)依題意,F(xiàn)(x)=asinx+cos2x,令F(x)=asinx+cos2x=0,
當sinx=0,即x=kπ(k∈Z)時,cos2x=1,從而x=kπ(k∈Z)不是方程F(x)=0的解,
∴方程F(x)=0等價于關(guān)于x的方程a=-,x≠kπ(k∈Z).
現(xiàn)研究x∈(0,π)∪(π,2π)時方程a=-的解的情況.
令h(x)=-,x∈(0,π)∪(π,2π),
則問題轉(zhuǎn)化為研究直線y=a與曲線y=h(x),x∈(0,π)∪(π,2π)的交點情況.
h′(x)=,令h′(x)=0,得x=或x=
當x變換時,h′(x),h(x)的變化情況如下表:
x(0,,π)(π,,2π)
h′(x)+--+
h(x)1-1
當x>0且x趨近于0時,h(x)趨向于-∞,
當x<π且x趨近于π時,h(x)趨向于-∞,
當x>π且x趨近于π時,h(x)趨向于+∞,
當x<2π且x趨近于2π時,h(x)趨向于+∞,
故當a>1時,直線y=a與曲線y=h(x)在(0,π)內(nèi)無交點,在(π,2π)內(nèi)有2個交點;
當a<-1時,直線y=a與曲線y=h(x)在(0,π)內(nèi)有2個交點,在(π,2π)內(nèi)無交點;
當-1<a<1時,直線y=a與曲線y=h(x)在(0,π)內(nèi)有2個交點,在(π,2π)內(nèi)有2個交點;
由函數(shù)h(x)的周期性,可知當a≠±1時,直線y=a與曲線y=h(x)在(0,nπ)內(nèi)總有偶數(shù)個交點,從而不存在正整數(shù)n,使得直線y=a與曲線y=h(x)在(0,nπ)內(nèi)恰有2013個零點;
又當a=1或a=-1時,直線y=a與曲線y=h(x)在(0,π)∪(π,2π)內(nèi)有3個交點,由周期性,2013=3×671,
∴依題意得n=671×2=1342.
綜上,當a=1,n=1342,或a=-1,n=1342時,函數(shù)F(x)=f(x)+ag(x)在(0,nπ)內(nèi)恰有2013個零點.
點評:本題考查同角三角函數(shù)基本關(guān)系,三角恒等變換,三角函數(shù)的圖象與性質(zhì),考查函數(shù)、函數(shù)的導數(shù)、函數(shù)的零點、不等式等基礎(chǔ)知識,考查運算求解能力,抽象概括能力,推理論證能力,考查函數(shù)與方程思想、數(shù)形結(jié)合思想、分類與整合思想、化歸與轉(zhuǎn)化思想,屬于難題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax+bsinx,當x=
π
3
時,取得極小值
π
3
-
3

(1)求a,b的值;
(2)對任意x1,x2∈[-
π
3
,
π
3
]
,不等式f(x1)-f(x2)≤m恒成立,試求實數(shù)m的取值范圍;
(3)設(shè)直線l:y=g(x),曲線S:y=F(x),若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意x∈R都有g(shù)(x)≥F(x),則稱直線l與曲線S的“上夾線”.觀察下圖:

根據(jù)上圖,試推測曲線S:y=mx-nsinx(n>0)的“上夾線”的方程,并作適當?shù)恼f明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-blnx在(1,2]是增函數(shù),g(x)=x-b
x
在(0,1)為減函數(shù).
(1)求b的值;
(2)設(shè)函數(shù)φ(x)=2ax-
1
x2
是區(qū)間(0,1]上的增函數(shù),且對于(0,1]內(nèi)的任意兩個變量s、t,f(s)≥?(t)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cos( 2x+
π
3
)+sin2x.
(Ⅰ)求函數(shù)f(x)的最小正周期和值域;
(Ⅱ)在△ABC中,角A、B、C的對邊分別為a、b、c,滿足2
AC
CB
=
2
ab,c=2
2
,f(A)=
1
2
-
3
4
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1
,
①求矩陣A;
②已知矩陣B=
1-1
01
,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應變換作用下所得到的△O'M'N'的面積.
(2)已知在直角坐標系xOy中,直線l的參數(shù)方程為
x=t-3
y=
3
 t
(t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C的極坐標方程為ρ2-4ρco sθ+3=0.
①求直線l普通方程和曲線C的直角坐標方程;
②設(shè)點P是曲線C上的一個動點,求它到直線l的距離的取值范圍.
(3)已知函數(shù)f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若關(guān)于x的不等式f(x)≥a2-a在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a
2x
+xlnx
,g(x)=x3-x2-x-1.
(1)如果存在x,x∈[0,2],使得g(x)-g(x)≥M,求滿足該不等式的最大整數(shù)M;
(2)如果對任意的s,t∈[
1
3
,2],都有f(s)≥g(t)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案