(本題滿分8分)探究函數(shù)的最小值,并確定相應的x的值,列表如下:
x | … | 1 | 2 | 4 | 8 | 16 | … | ||||
y | … | 16.25 | 8.5 | 5 | 4 | 5 | 8.5 | 16.25 | … |
請觀察表中y值隨x值變化的特點,完成下列問題:
(Ⅰ)若,則 (請?zhí)顚憽?gt;, =, <”號);若函數(shù),(x>0)在區(qū)間(0,2)上遞減,則在 上遞增;
(Ⅱ)當x= 時,,(x>0)的最小值為 ;
(Ⅲ)試用定義證明,(x>0)在區(qū)間(0,2)上遞減.
科目:高中數(shù)學 來源:2014屆廣東省高一上學期期中試題數(shù)學 題型:解答題
(本題滿分12分)探究函數(shù)的最小值,并確定取得最小值時x的值. 列表如下, 請觀察表中y值隨x值變化的特點,完成以下的問題.
x |
… |
0.25 |
0.5 |
0.75 |
1 |
1.1 |
1.2 |
1.5 |
2 |
3 |
5 |
… |
y |
… |
8.063 |
4.25 |
3.229 |
3 |
3.028 |
3.081 |
3.583 |
5 |
9.667 |
25.4 |
… |
已知:函數(shù)在區(qū)間(0,1)上遞減,問:
(1)函數(shù)在區(qū)間 上遞增.當 時, ;
(2)函數(shù)在定義域內(nèi)有最大值或最小值嗎?如有,是多少?此時x為何值?(直接回答結果,不需證明)
查看答案和解析>>
科目:高中數(shù)學 來源:2010年海南省高一期中考試數(shù)學試卷 題型:解答題
((本題滿分8分)探究函數(shù)的最小值,并確定相應的x的值,列表如下:
x |
… |
1 |
2 |
4 |
8 |
16 |
… |
||||
y |
… |
16.25 |
8.5 |
5 |
4 |
5 |
8.5 |
16.25 |
… |
請觀察表中y值隨x值變化的特點,完成下列問題:
(Ⅰ)若,則 (請?zhí)顚憽?gt;, =, <”號);若函數(shù),(x>0)在區(qū)間(0,2)上遞減,則在 上遞增;
(Ⅱ)當x= 時,,(x>0)的最小值為 ;
(Ⅲ)試用定義證明,(x>0)在區(qū)間(0,2)上遞減.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年河北省高一上學期期中考試數(shù)學試卷 題型:解答題
(本題滿分12分)探究函數(shù),的最小值,并確定取得最小值時的值,列表如下:
… |
0.5 |
1 |
1.5 |
1.7 |
1.9 |
2 |
2.1 |
2.2 |
2.3 |
3 |
4 |
5 |
7 |
… |
|
… |
8.5 |
5 |
4.17 |
4.05 |
4.005 |
4 |
4.005 |
4.102 |
4.24 |
4.3 |
5 |
5.8 |
7.57 |
… |
請觀察表中值隨值變化的特點,完成下列問題:
(1) 當時,在區(qū)間上遞減,在區(qū)間 上遞增;
所以,= 時, 取到最小值為 ;
(2) 由此可推斷,當時,有最 值為 ,此時= ;
(3) 證明: 函數(shù)在區(qū)間上遞減;
(4) 若方程在內(nèi)有兩個不相等的實數(shù)根,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分12分)探究函數(shù),的最小值,并確定取得最小值時的值,列表如下:
… | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … | |
… | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.102 | 4.24 | 4.3 | 5 | 5.8 | 7.57 | … |
請觀察表中值隨值變化的特點,完成下列問題:
(1) 當時,在區(qū)間上遞減,在區(qū)間 上遞增;
所以,= 時, 取到最小值為 ;
(2) 由此可推斷,當時,有最 值為 ,此時= ;
(3) 證明: 函數(shù)在區(qū)間上遞減;
(4) 若方程在內(nèi)有兩個不相等的實數(shù)根,求實數(shù)的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com