A. | 若m>1,則x2-2x+m>0 | |
B. | “正方形是矩形”的否命題 | |
C. | “若x=1,則x2=1”的逆命題 | |
D. | “若x+y=0,則x=0,且y=0”的逆否命題. |
分析 當(dāng)m>1時,方程x2-2x+m=0的判別式△<0,對應(yīng)二次函數(shù)圖象開口向上且與x軸無交點,得函數(shù)值恒大于0,可判斷A,由原命題列出否命題,可判斷B,由原命題列出逆命題,舉出反例,可判斷C,由原命題列出逆否命題,舉出反例,可判斷D,從而可得答案.
解答 解:對于A,當(dāng)m>1時,方程x2-2x+m=0的判別式△<0,對應(yīng)二次函數(shù)圖象開口向上且與x軸無交點,∴函數(shù)值恒大于0,故A正確;
對于B,“正方形是矩形”的否命題是“若一個四邊形不是正方形,則它不是矩形”,為假命題,故B不正確;
對于C,“若x=1,則x2=1”的逆命題是“若x2=1,則x=1”,x=±1,為假命題,故C不正確;
對于D,“若x+y=0,則x=0,且y=0”的逆否命題是“若x≠0,或y≠0,則x+y≠0”,若x≠0,或y≠0,則x+y=0,為假命題,故D不正確.
∴真命題是:A.
故選:A.
點評 本題考查了命題的真假判斷與應(yīng)用,考查了不等式的解法,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{2}+5i$ | B. | $\frac{5}{2}-5i$ | C. | $5-\frac{5}{2}i$ | D. | $-5+\frac{5}{2}i$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-1<x<0} | B. | {x|x<-1} | C. | {x|x>-1} | D. | {x|x<0} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com