在△ABC中,已知AC=2,BC=4,cosA=-
35

(1)求sinB的值;(2)求cosC的值.
分析:(1)由cosA的值,利用同角三角函數(shù)間的基本關(guān)系求出sinA的值,再由AC與BC的長(zhǎng),利用正弦定理即可求出sinB的追;
(2)由sinB的值求出cosB的值,cosC變形為-cos(A+B),利用兩角和與差的余弦函數(shù)公式化簡(jiǎn),將各自的值代入計(jì)算即可求出值.
解答:解:(1)∵AC=b=2,BC=a=4,cosA=-
3
5
,
∴sinA=
1-cos2A
=
4
5
,
由正弦定理
a
sinA
=
b
sinB
得:sinB=
bsinA
a
=
4
5
4
=
2
5

(2)∵cosA=-
3
5
<0,
∴A為鈍角,B、C為銳角,
∴cosB=
1-sin2B
=
21
5

則cosC=-cos(A+B)=-cosAcosB+sinAsinB=
3
5
×
21
5
+
4
5
×
2
5
=
3
21
+8
25
點(diǎn)評(píng):此題考查了正弦定理,同角三角函數(shù)間的基本關(guān)系,以及兩角和與差的余弦函數(shù)公式,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知A、B、C成等差數(shù)列,求tg(
A
2
)+
3
tg(
A
2
)tg(
C
2
)+tg(
C
2
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知A=45°,a=2,b=
2
,則B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a=
3
,b=
2
,1+2cos(B+C)=0,求:
(1)角A,B; 
(2)求BC邊上的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知A=60°,
AB
AC
=1,則△ABC的面積為
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a=1,b=2,cosC=
34

(1)求AB的長(zhǎng);
(2)求sinA的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案