如圖,已知AA1與BB1是異面直線,且AA1=2,BB1=1,AB⊥BB1,A1B1⊥BB1,則AA1與BB1所成的角為


  1. A.
    30°
  2. B.
    45°
  3. C.
    60°
  4. D.
    90°
C
分析:設(shè)AA1與BB1所成的角為θ,由兩個向量的數(shù)量積的定義可得=1×2 cosθ,又
=( )•(BB1 )=0++0=1,由此求得cosθ 的值,可得θ 的值.
解答:設(shè)AA1與BB1所成的角為θ,由兩個向量的數(shù)量積的定義可得=1×2 cosθ.
=( )•(BB1 )=0++0=1,
故1×2 cosθ=1,∴cosθ=,故θ=60°,
故選C.
點(diǎn)評:本題考查異面直線所成的角的定義和求法,兩個向量的數(shù)量積的定義,兩個向量垂直的性質(zhì),求出 cosθ=
是解題的關(guān)鍵和難點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AA1與BB1是異面直線,且AA1=2,BB1=1,AB⊥BB1,A1B1⊥BB1,則AA1與BB1所成的角為( 。
A、30°B、45°C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:013

如圖,已知AA1BB1是異面直線,且AA1=2,BB1=1ABBB1,A1B1BB1,則AA1BB1所成的角為(   

A.30°                     B.60°

C.45°                     D.90°

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013

如圖,已知AA1BB1是異面直線,且AA1=2,BB1=1,ABBB1,A1B1BB1,則AA1BB1所成的角為(   

A.30°                     B.60°

C.45°                     D.90°

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2005-2006學(xué)年江蘇省常州市武進(jìn)區(qū)前黃高中高二(上)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,已知AA1與BB1是異面直線,且AA1=2,BB1=1,AB⊥BB1,A1B1⊥BB1,則AA1與BB1所成的角為( )

A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

同步練習(xí)冊答案