時,有不等式( 。
A.
B.當,當
C.
D.當,當
C

試題分析:設,令,當,當,所以函數(shù),當
點評:將不等式問題轉化為函數(shù)最值問題,通過求函數(shù)的最值來確定不等式的恒成立
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)的最大值為1.
(1)求常數(shù)的值;(2)求使成立的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

為奇函數(shù),為常數(shù),
(1)求的值;
(2)證明在區(qū)間上單調(diào)遞增;
(3)若,不等式恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

時,冪函數(shù)為減函數(shù),求實數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對于函數(shù),如果存在區(qū)間,同時滿足下列條件:①內(nèi)是單調(diào)的;②當定義域是時,的值域也是,則稱是該函數(shù)的“夢想?yún)^(qū)間”.若函數(shù)存在“夢想?yún)^(qū)間”,則的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

函數(shù)的定義域為,且滿足對于定義域內(nèi)任意的都有等式.
(1)求的值;
(2)判斷的奇偶性并證明;
(3)若,且上是增函數(shù),解關于的不等式

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)當時,如果函數(shù)僅有一個零點,求實數(shù)的取值范圍.
(2)當時,比較與1的大小.
(3)求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

請閱讀下列材料: 已知一系列函數(shù)有如下性質(zhì):
函數(shù)上是減函數(shù),在上是增函數(shù);
函數(shù)上是減函數(shù),在上是增函數(shù);
函數(shù)上是減函數(shù),在上是增函數(shù);
……
利用上述所提供的信息解決問題:
若函數(shù)的值域是,則實數(shù)的值是        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

,(1)分別求;(2)然后歸納猜想一般性結論,并給出證明.

查看答案和解析>>

同步練習冊答案