設(shè)a為實(shí)數(shù),記函數(shù)的最大值為
(1)設(shè)t=,求t的取值范圍,并把f(x)表示為t的函數(shù)m(t) ;
(2)求 ;
(3)試求滿足的所有實(shí)數(shù)a.

(1),;(2)=(3).

解析試題分析:(1)根據(jù)的取值范圍求出的范圍,再將用含的式子表示;(2)由題意知即為函數(shù)的最大值,因?yàn)閷?duì)稱軸含有參數(shù),所以要討論處理;(3)根據(jù)(2)問(wèn)得出的,由在對(duì)應(yīng)區(qū)域上討論解答即可.
試題解析:(1)∵,∴要使有意義,必須,即.
,且 ①   
的取值范圍是,                                          2分
由①得:,
.                 4分
(2)由題意知即為函數(shù),的最大值,
∵直線是拋物線的對(duì)稱軸,                       5分
∴可分以下幾種情況進(jìn)行討論:
①當(dāng)時(shí),函數(shù),的圖象是開(kāi)口向上的拋物線的一段,
上單調(diào)遞增,故;
②當(dāng)時(shí),,,有=2;
③當(dāng)時(shí),,函數(shù),的圖象是開(kāi)口向下的拋物線的一段,
時(shí),,
時(shí),,
時(shí),.     9分
綜上所述,有=                        10分
(3)當(dāng)時(shí),
當(dāng)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

機(jī)床廠今年年初用98萬(wàn)元購(gòu)進(jìn)一臺(tái)數(shù)控機(jī)床,并立即投入生產(chǎn)使用,計(jì)劃第一年維修、保養(yǎng)費(fèi)用12萬(wàn)元,從第二年開(kāi)始,每年所需維修、保養(yǎng)費(fèi)用比上一年增加4萬(wàn)元,該機(jī)床使用后,每年的總收入為50萬(wàn)元,設(shè)使用x年后數(shù)控機(jī)床的盈利額為y萬(wàn)元.
(Ⅰ)寫(xiě)出y與x之間的函數(shù)關(guān)系式;
(Ⅱ)從第幾年開(kāi)始,該機(jī)床開(kāi)始盈利(盈利額為正值);
(Ⅲ)使用若干年后,對(duì)機(jī)床的處理方案有兩種:
(1)當(dāng)年平均盈利額達(dá)到最大值時(shí),以30萬(wàn)元價(jià)格處理該機(jī)床;
(2)當(dāng)盈利額達(dá)到最大值時(shí),以12萬(wàn)元價(jià)格處理該機(jī)床.
請(qǐng)你研究一下哪種方案處理較為合理?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

定義在上的函數(shù),當(dāng)時(shí),,且對(duì)任意的 ,有,
(Ⅰ)求證:;
(Ⅱ)求證:對(duì)任意的,恒有;
(Ⅲ)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在半徑為、圓心角為的扇形的弧上任取一點(diǎn),作扇形的內(nèi)接矩形,使點(diǎn)上,點(diǎn)上,設(shè)矩形的面積為

(Ⅰ)按下列要求求出函數(shù)關(guān)系式:
①設(shè),將表示成的函數(shù)關(guān)系式;
②設(shè),將表示成的函數(shù)關(guān)系式;
(Ⅱ)請(qǐng)你選用(1)中的一個(gè)函數(shù)關(guān)系式,求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知某公司生產(chǎn)品牌服裝的年固定成本是10萬(wàn)元,每生產(chǎn)千件,須另投入2 7萬(wàn)元,設(shè)該公司年內(nèi)共生產(chǎn)該品牌服裝x千件并全部銷售完,每千件的銷售收入為R(x)萬(wàn)元,且 
(1)寫(xiě)出年利潤(rùn)W(萬(wàn)元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該公司在這一品牌服裝的生產(chǎn)中所獲利潤(rùn)最大?(注:年利潤(rùn)=年銷售收入 年總成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)某沿海地區(qū)養(yǎng)殖的一種特色海鮮上市時(shí)間僅能持續(xù)5個(gè)月,預(yù)測(cè)上市初期和后期會(huì)因供應(yīng)不足使價(jià)格呈持續(xù)上漲態(tài)勢(shì),而中期又將出現(xiàn)供大于求,使價(jià)格連續(xù)下跌.現(xiàn)有三種價(jià)格模擬函數(shù):①;②;③.(以上三式中均為常數(shù),且
(1)為準(zhǔn)確研究其價(jià)格走勢(shì),應(yīng)選哪種價(jià)格模擬函數(shù)(不必說(shuō)明理由)
(2)若,,求出所選函數(shù)的解析式(注:函數(shù)定義域是.其中表示8月1日,表示9月1日,…,以此類推);
(3)在(2)的條件下研究下面課題:為保證養(yǎng)殖戶的經(jīng)濟(jì)效益,當(dāng)?shù)卣?jì)劃在價(jià)格下跌期間積極拓寬外銷,請(qǐng)你預(yù)測(cè)該海鮮將在哪幾個(gè)月份內(nèi)價(jià)格下跌.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)是常數(shù))在區(qū)間上有
(1)求的值;
(2)若當(dāng)時(shí),求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)在一個(gè)周期內(nèi)的部分對(duì)應(yīng)值如下表:















(I)求的解析式;
(II)設(shè)函數(shù),,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某公司擬投資開(kāi)發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬(wàn)元至1000萬(wàn)元的投資收益.為加快開(kāi)發(fā)進(jìn)程,特制定了產(chǎn)品研制的獎(jiǎng)勵(lì)方案:獎(jiǎng)金(萬(wàn)元)隨投資收益(萬(wàn)元)的增加而增加,但獎(jiǎng)金總數(shù)不超過(guò)9萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)投資收益的20%. 
現(xiàn)給出兩個(gè)獎(jiǎng)勵(lì)模型:①;②.
試分析這兩個(gè)函數(shù)模型是否符合公司要求?

查看答案和解析>>

同步練習(xí)冊(cè)答案