分析 (1)根據(jù)向量的平行和兩角差的正弦公式即可求出,
(2)根據(jù)向量的數(shù)量公式和二倍角公式兩角差的正弦公式化簡(jiǎn)f(x),再根據(jù)正弦函數(shù)圖象和性質(zhì)即可求出單調(diào)遞增區(qū)間.
解答 解:(1)由$\overrightarrow m∥\overrightarrow n$可得sin(x-$\frac{π}{6}$)-cosx=0,展開變形可得$\frac{\sqrt{3}}{2}$sinx-$\frac{3}{2}$cosx=0,
∴sinx=$\sqrt{3}$cosx,
∴tanx=$\sqrt{3}$,
(2)$f(x)=\overrightarrow m•\overrightarrow n$=sin(x-$\frac{π}{6}$)cosx+1=$\frac{\sqrt{3}}{2}$sinxcosx-$\frac{1}{2}$cos2x+1=$\frac{\sqrt{3}}{4}$sin2x-$\frac{1}{4}$cos2x+$\frac{3}{4}$=$\frac{1}{2}$sin(2x-$\frac{π}{6}$)+$\frac{3}{4}$,
由-$\frac{π}{2}$+2kπ≤2x-$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,k∈Z,
即-$\frac{π}{6}$+kπ≤x≤$\frac{π}{3}$+kπ,k∈Z,
∴f(x)的單調(diào)遞增區(qū)間為[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ],k∈Z
點(diǎn)評(píng) 本題考查了向量的平行和數(shù)量積,以及三角函數(shù)的恒等變化,屬于中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{4}$或$\frac{π}{6}$ | B. | $\frac{π}{12}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 1 | C. | 0 | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -9 | B. | 15 | C. | -15 | D. | ±15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ${x^2}-\frac{y^2}{8}=1$ | B. | $\frac{x^2}{6}-\frac{y^2}{3}=1$ | C. | $\frac{x^2}{7}-\frac{y^2}{2}=1$ | D. | $\frac{x^2}{5}-\frac{y^2}{4}=1$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com