分析 (Ⅰ)取BC中點N,連結MN,C1N,由已知得A1,M,N,C1四點共面,由已知條件推導出DE∥C1N,從而求出$\frac{CE}{EB}$.
(Ⅱ)連結B1M,由已知條件得四邊形ABB1A1為矩形,B1C1與平面A1MC1所成的角為∠B1C1M,由此能求出直線BC和平面A1MC1所成的角的余弦值.
解答 解:(Ⅰ)取BC中點N,連結MN,C1N,…(1分)
∵M,N分別為AB,CB中點
∴MN∥AC∥A1C1,
∴A1,M,N,C1四點共面,…(3分)
且平面BCC1B1∩平面A1MNC1=C1N,
又DE∩平面BCC1B1,
且DE∥平面A1MC1,∴DE∥C1N,
∵D為CC1的中點,∴E是CN的中點,…(5分)
∴$\frac{CE}{EB}$=$\frac{1}{3}$.…(6分)
(Ⅱ)連結B1M,…(7分)
因為三棱柱ABC-A1B1C1為直三棱柱,∴AA1⊥平面ABC,
∴AA1⊥AB,即四邊形ABB1A1為矩形,且AB=2AA1,
∵M是AB的中點,∴B1M⊥A1M,
又A1C1⊥平面ABB1A1,
∴A1C1⊥B1M,從而B1M⊥平面A1MC1,…(9分)
∴MC1是B1C1在平面A1MC1內的射影,
∴B1C1與平面A1MC1所成的角為∠B1C1M,
又B1C1∥BC,
∴直線BC和平面A1MC1所成的角即B1C1與平面A1MC1所成的角…(10分)
設AB=2AA1=2,且三角形A1MC1是等腰三角形
∴A1M=A1C1=$\sqrt{2}$,則MC1=2,B1C1=$\sqrt{6}$,
∴cos∠B1C1M=$\frac{\sqrt{6}}{3}$,∴直線BC和平面A1MC1所成的角的余弦值為$\frac{\sqrt{6}}{3}$.…(12分)
點評 本題考查兩條線段的比值的求法,考查角的余弦值的求法,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a=1,b=2 | B. | a=1,b=-2 | C. | a=-1,b=2 | D. | a=-1,b=-2 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{4}$ | B. | $\sqrt{2}$ | C. | 2$\sqrt{2}$ | D. | 3$\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com