精英家教網 > 高中數學 > 題目詳情
如圖,CDEF是以圓O為圓心,半徑為1的圓的內接正方形,將一顆豆子隨機地扔到該圓內,用A表示事件“豆子落在扇形OCFH內”(點H將劣弧二等分),B表示事件“豆子落在正方形CDEF內”,則P(B|A)( )

A.
B.
C.
D.
【答案】分析:分別求出扇形OCFH的面積,豆子落在扇形OCFH內且在正方形CDEF內的面積,再利用條件率公式,即可求得結論.
解答:解:A表示事件“豆子落在扇形OCFH內”(點H將劣弧二等分),扇形OCFH的面積為
∴事件A發(fā)生的概率P(A)==
∵豆子落在扇形OCFH內且在正方形CDEF內的面積為=
∴P(AB)=
∴P(B|A)===
故選B.
點評:本題考查幾何概型,考查概率的計算,正確求面積是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,CDEF是以圓O為圓心,半徑為1的圓的內接正方形,將一顆豆子隨機地扔到該圓內,用A表示事件“豆子落在扇形OCFH內”(點H將劣弧EF二等分),則事件A發(fā)生的概率P(A)=
3
8
3
8

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•棗莊一模)如圖,CDEF是以圓O為圓心,半徑為1的圓的內接正方形,將一顆豆子隨機地扔到該圓內,用A表示事件“豆子落在扇形OCFH內”(點H將劣弧
EF
二等分),B表示事件“豆子落在正方形CDEF內”,則P(B|A)( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•棗莊一模)如圖,CDEF是以圓O為圓心,半徑為1的圓的內接正方形,將一顆豆子隨機地扔到該圓內,用A表示事件“豆子落在扇形OCFH內”(點H將劣弧
EF
二等分),則事件A發(fā)生的概率P(A)=(  )

查看答案和解析>>

科目:高中數學 來源:2011-2012學年湖南省長沙市田家炳實驗中學高二(下)期末數學試卷(文科)(解析版) 題型:填空題

如圖,CDEF是以圓O為圓心,半徑為1的圓的內接正方形,將一顆豆子隨機地扔到該圓內,用A表示事件“豆子落在扇形OCFH內”(點H將劣弧EF二等分),則事件A發(fā)生的概率P(A)=   

查看答案和解析>>

同步練習冊答案