(12分)如圖,在三棱柱ABC﹣A1B1C中,側(cè)棱AA1⊥底面ABC,AB=AC=2AA1=2,∠BAC=120°,D,D1分別是線(xiàn)段BC,B1C1的中點(diǎn),P是線(xiàn)段AD上異于端點(diǎn)的點(diǎn).

(Ⅰ)在平面ABC內(nèi),試作出過(guò)點(diǎn)P與平面A1BC平行的直線(xiàn)l,說(shuō)明理由,并證明直線(xiàn)l⊥平面ADD1A1;

(Ⅱ)設(shè)(Ⅰ)中的直線(xiàn)l交AC于點(diǎn)Q,求三棱錐A1﹣QC1D的體積.(錐體體積公式:,其中S為底面面積,h為高)

 

【答案】

(Ⅰ)見(jiàn)解析(Ⅱ)

【解析】(Ⅰ)在平面ABC內(nèi),過(guò)點(diǎn)P作直線(xiàn)l和BC平行,由于直線(xiàn)l不在平面A1BC內(nèi),而B(niǎo)C在平面A1BC內(nèi),

故直線(xiàn)l與平面A1BC平行.

三角形ABC中,∵AB=AC=2AA1=2,∠BAC=120°,D,D1分別是線(xiàn)段BC,B1C1的中點(diǎn),∴AD⊥BC,∴l(xiāng)⊥AD.

再由AA1⊥底面ABC,可得 AA1⊥l.

而AA1∩AD=A,

∴直線(xiàn)l⊥平面ADD1A1

(Ⅱ)設(shè)(Ⅰ)中的直線(xiàn)l交AC于點(diǎn)Q,過(guò)點(diǎn)D作DE⊥AC,

∵側(cè)棱AA1⊥底面ABC,故三棱柱ABC﹣A1B1C為直三棱柱,

故DE⊥平面AA1C1C.

直角三角形ACD中,∵AC=2,∠CAD=60°,∴AD=AC•cos60°=1,∴DE=AD•sin60°=

===1,

∴三棱錐A1﹣QC1D的體積 ==•DE=×1×=

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在三棱柱ABC-A'B'C'中,若E、F分別為AB、AC的中點(diǎn),平面EB'C'F將三棱柱分成體積為V1、V2的兩部分,那么V1:V2為( 。
A、3:2B、7:5C、8:5D、9:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,A1A=AC=2,BC=1,AB=
5
,則此三棱柱的側(cè)視圖的面積為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1中,四邊形A1ABB1為菱形,∠A1AB=60°,四邊形BCC1B1為矩形,若AB⊥BC且AB=4,BC=3
(1)求證:平面A1CB⊥平面ACB1
(2)求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•通州區(qū)一模)如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,AB=2
2
,CC1=4,M是棱CC1上一點(diǎn).
(Ⅰ)求證:BC⊥AM;
(Ⅱ)若N是AB上一點(diǎn),且
AN
AB
=
CM
CC1
,求證:CN∥平面AB1M;
(Ⅲ)若CM=
5
2
,求二面角A-MB1-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在三棱柱ABC-A1B1C1中,AA1⊥面ABC,AC⊥BC,E分別在線(xiàn)段B1C1上,B1E=3EC1,AC=BC=CC1=4.
(1)求證:BC⊥AC1;
(2)試探究:在AC上是否存在點(diǎn)F,滿(mǎn)足EF∥平面A1ABB1,若存在,請(qǐng)指出點(diǎn)F的位置,并給出證明;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案