α∈(
π
2
,π)
,則關(guān)于x的不等式logsinα(1-x2)>2的解集是( 。
分析:根據(jù)α的范圍,求出sinα的范圍,通過對數(shù)函數(shù)的單調(diào)性定義域,推出不等式的等價不等式,解答即可得到選項.
解答:解:因為α∈(
π
2
,π)
,所以sinα∈(0,1),
不等式logsinα(1-x2)>2化為不等式logsinα(1-x2)>
log
sin2α
sinα
,
∴0<1-x2<sin2α,解得-1<x<cosα或-cosα<x<1.
α∈(
π
2
,π)
,則關(guān)于x的不等式logsinα(1-x2)>2的解集是:{x|-1<x<cosα或-cosα<x<1}.
故選C.
點評:本題是中檔題,考查對數(shù)函數(shù)的基本性質(zhì),考查不等式的求法,計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,b>0,若
2
是4a與2b的等比中項,則
2
a
+
1
b
的最小值為( 。
A、2
2
B、8
C、9
D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別為橢圓
x2
3
+
y2
2
=1
的左、右焦點,直線l1過點F1且垂直于橢圓的長軸,動直線l2垂直于直線l1,垂足為D,線段DF2的垂直平分線交l2于點M.
(Ⅰ)求動點M的軌跡C的方程;
(Ⅱ)過點F1作直線交曲線C于兩個不同的點P和Q,設(shè)
F1P
F1Q
,若λ∈[2,3],求
F2P
F2Q
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若-2∈{a-2,2a-1,a2-4},則實數(shù)a為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青島一模)已知函數(shù)f(x)對定義域R內(nèi)的任意x都有f(x)=f(4-x),且當x≠2時其導(dǎo)函數(shù)f′(x)滿足xf′(x)>2f′(x),若2<a<4則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若-
π
2
<α<0,則點(cotα,cosα)必在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步練習冊答案