【題目】我校為了讓高一學(xué)生更有效率地利用周六的時(shí)間,在高一新生第一次摸底考試后采取周六到校自主學(xué)習(xí),同時(shí)由班主任老師值班,家長(zhǎng)輪流值班.一個(gè)月后進(jìn)行了第一次月考,高一數(shù)學(xué)教研組通過系統(tǒng)抽樣抽取了名學(xué)生,并統(tǒng)計(jì)了他們這兩次數(shù)學(xué)考試的優(yōu)良人數(shù)和非優(yōu)良人數(shù),其中部分統(tǒng)計(jì)數(shù)據(jù)如下:
(1)請(qǐng)畫出這次調(diào)查得到的列聯(lián)表;并判定能否在犯錯(cuò)誤概率不超過的前提下認(rèn)為周六到校自習(xí)對(duì)提高學(xué)生成績(jī)有效?
(2)從這組學(xué)生摸底考試中數(shù)學(xué)優(yōu)良成績(jī)中和第一次月考的數(shù)學(xué)非優(yōu)良成績(jī)中,按分層抽樣隨機(jī)抽取個(gè)成績(jī),再?gòu)倪@個(gè)成績(jī)中隨機(jī)抽取個(gè),求這個(gè)成績(jī)來自同一次考試的概率.
下面是臨界值表供參考:
(參考公式: ,其中
【答案】(1)能(2).
【解析】試題分析:(1)根據(jù)總數(shù)確定各區(qū)間人數(shù),代入卡方公式得,再與參考數(shù)據(jù)比較判斷可靠率(2)先按照分層抽樣確定各層次抽取人數(shù),再利用組合數(shù)確定事件總數(shù)以及對(duì)應(yīng)事件數(shù),最后根據(jù)古典概型概率公式求概率
試題解析:(1列聯(lián)表
隨機(jī)變量的觀測(cè)值,因此能在犯錯(cuò)誤概率不超過的前提下,認(rèn)為周六到校自習(xí)對(duì)提高學(xué)生成績(jī)有效;
(2)從摸底考試數(shù)學(xué)優(yōu)良成績(jī)中抽取個(gè);從第一次月考數(shù)學(xué)非優(yōu)良成績(jī)中抽取個(gè),設(shè)從這5個(gè)成績(jī)成績(jī)來自同一次考試的事件為,則因此,這2個(gè)成績(jī)來自同一次考試的概率是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購(gòu)買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,且保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系.發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:
交強(qiáng)險(xiǎn)浮動(dòng)因素和費(fèi)率浮動(dòng)比率表 | ||
浮動(dòng)因素 | 浮動(dòng)比率 | |
A1 | 上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% |
A2 | 上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% |
A3 | 上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% |
A4 | 上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% |
A5 | 上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% |
A6 | 上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一輛普通6座以下私家車在第四年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率;
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購(gòu)進(jìn)一輛事故車虧損5 000元,一輛非事故車盈利10 000元.且各種投保類型的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問題:
①若該銷售商店內(nèi)有6輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機(jī)挑選2輛車,求這2輛車恰好有一輛為事故車的概率;
②若該銷售商一次購(gòu)進(jìn)120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖.圖中A點(diǎn)表示十月的平均最高氣溫約為15℃,B點(diǎn)表示四月的平均最低氣溫約為5℃.下面敘述不正確的是 ( )
A. 各月的平均最低氣溫都在0℃以上
B. 七月的平均溫差比一月的平均溫差大
C. 三月和十一月的平均最高氣溫基本相同
D. 平均最高氣溫高于20℃的月份有5個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)當(dāng)m=5時(shí),求f(x)>0的解集;
(2)若關(guān)于的不等式f(x)≥2的解集是R,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=kex﹣x3+2 (k∈R)恰有三個(gè)極值點(diǎn)xl,x2,x3,且xl<x2<x3.
(I)求k的取值范圍:
(II)求f(x2)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn)。
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在平行于OA的直線,使得直線與橢圓C有公共點(diǎn),且直線OA與的距離等于4?若存在,求出直線的方程;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1: (t為參數(shù)),C2: (θ為參數(shù)).若曲線C1上的點(diǎn)P對(duì)應(yīng)的參數(shù)為t=,Q為曲線C2上的動(dòng)點(diǎn),則線段PQ的中點(diǎn)M到直線C3: (t為參數(shù))距離的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x與y之間的幾組數(shù)據(jù)如下表:
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 0 | 2 | 1 | 3 | 3 | 4 |
假設(shè)根據(jù)上表數(shù)據(jù)所得的線性回歸方程為=x+.若某同學(xué)根據(jù)上表中的前兩組數(shù)據(jù)(1,0)和(2,2)求得的直線方程為y=b′x+a′,則以下結(jié)論正確的是( )
A. >b′,>a′ B. >b′,<a′
C. <b′,>a′ D. <b′,<a′
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司研制出了一種新產(chǎn)品,試制了一批樣品分別在國(guó)內(nèi)和國(guó)外上市銷售,并且價(jià)格根據(jù)銷售情況不斷進(jìn)行調(diào)整,結(jié)果40天內(nèi)全部銷完.公司對(duì)銷售及銷售利潤(rùn)進(jìn)行了調(diào)研,結(jié)果如圖所示,其中圖①(一條折線)、圖②(一條拋物線段)分別是國(guó)外和國(guó)內(nèi)市場(chǎng)的日銷售量與上市時(shí)間的關(guān)系,圖③是每件樣品的銷售利潤(rùn)與上市時(shí)間的關(guān)系.
(1)分別寫出國(guó)外市場(chǎng)的日銷售量f(t)與上市時(shí)間t的關(guān)系及國(guó)內(nèi)市場(chǎng)的日銷售量g(t)與上市時(shí)間t的關(guān)系;
(2)國(guó)外和國(guó)內(nèi)的日銷售利潤(rùn)之和有沒有可能恰好等于6 300萬元?若有,請(qǐng)說明是上市后的第幾天;若沒有,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com