【題目】已知xy之間的幾組數(shù)據(jù)如下表:

x

1

2

3

4

5

6

y

0

2

1

3

3

4

假設根據(jù)上表數(shù)據(jù)所得的線性回歸方程為x.若某同學根據(jù)上表中的前兩組數(shù)據(jù)(1,0)和(2,2)求得的直線方程為ybxa′,則以下結論正確的是(  )

A. >b′,>a B. >b′,<a

C. <b′,>a D. <b′,<a

【答案】C

【解析】試題分析:由表格總的數(shù)據(jù)可得n,,,進而可得,和,代入可得,進而可得,再由直線方程的求法可得b′a′,比較可得答案.

解:由題意可知n=6===,==,

=91﹣6×=22,=58﹣6××=

故可得==,==×=,

而由直線方程的求解可得b′==2,把(1,0)代入可得a′=﹣2,

比較可得b′a′,

故選C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】【2018屆西藏拉薩市高三第一次模擬考試(期末)】如圖,四棱錐底面為等腰梯形, ,點中點.

(1)證明: 平面;

(2)若平面 ,直線與平面所成角的正切值為,求四棱錐的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我校為了讓高一學生更有效率地利用周六的時間,在高一新生第一次摸底考試后采取周六到校自主學習,同時由班主任老師值班,家長輪流值班.一個月后進行了第一次月考,高一數(shù)學教研組通過系統(tǒng)抽樣抽取了名學生,并統(tǒng)計了他們這兩次數(shù)學考試的優(yōu)良人數(shù)和非優(yōu)良人數(shù),其中部分統(tǒng)計數(shù)據(jù)如下:

(1)請畫出這次調(diào)查得到的列聯(lián)表;并判定能否在犯錯誤概率不超過的前提下認為周六到校自習對提高學生成績有效?

(2)從這組學生摸底考試中數(shù)學優(yōu)良成績中和第一次月考的數(shù)學非優(yōu)良成績中,按分層抽樣隨機抽取個成績,再從這個成績中隨機抽取個,求這個成績來自同一次考試的概率.

下面是臨界值表供參考:

(參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校400名學生在一次百米賽跑測試中,成績?nèi)慷荚?2秒到17秒之間,現(xiàn)抽取其中50個樣本,將測試結果按如下方式分成五組:第一組,第二組,…,第五組,如圖所示的是按上述分組方法得到的頻率分布直方圖.

(1)請估計該校400名學生中,成績屬于第三組的人數(shù);

(2)請估計樣本數(shù)據(jù)的中位數(shù)(精確到0.01);

(3)若樣本第一組中只有一名女生,其他都是男生,第五組則只有一名男生,其他都是女生,現(xiàn)從第一、第五組中各抽取2名同學組成一個特色組,設其中男同學的人數(shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】動點P到定點F(0,1)的距離比它到直線的距離小1,設動點P的軌跡為曲線C,過點F的直線交曲線C于AB兩個不同的點,過點AB分別作曲線C的切線,且二者相交于點M

(Ⅰ)求曲線C的方程;

()求證: ;

(Ⅲ)△ABM的面積的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解某校九年級1 600名學生的體能情況,隨機抽查了部分學生,測試1分鐘仰臥起坐的成績(次數(shù)),將數(shù)據(jù)整理后繪制成如圖所示的頻率分布直方圖,根據(jù)直方圖的數(shù)據(jù),下列結論錯誤的是(  )

A. 該校九年級學生1分鐘仰臥起坐的次數(shù)的中位數(shù)為26.25

B. 該校九年級學生1分鐘仰臥起坐的次數(shù)的眾數(shù)為27.5

C. 該校九年級學生1分鐘仰臥起坐的次數(shù)超過30次的約有320人

D. 該校九年級學生1分鐘仰臥起坐的次數(shù)少于20次的約有32人

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為,值域是.

(Ⅰ)求證: ;

(Ⅱ)求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓 的離心率為, 為橢圓的左右頂點,焦點到短軸端點的距離為2, 、為橢圓上異于的兩點,且直線的斜率等于直線斜率的2倍.

(Ⅰ)求證:直線與直線的斜率乘積為定值;

(Ⅱ)求三角形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知在極坐標系和直角坐標系中,極點與直角坐標系的原點重合,極軸與軸的非負半軸重合,曲線的極坐標方程為,曲線的參數(shù)方程為為參數(shù).

1)求曲線的直角坐標方程和曲線的普通方程;

(2)判斷曲線與曲線的位置關系,若兩曲線相交,求出兩交點間的距離.

查看答案和解析>>

同步練習冊答案