【題目】某校舉行運(yùn)動(dòng)會(huì),其中三級(jí)跳遠(yuǎn)的成績在米以上的進(jìn)入決賽,把所得的數(shù)據(jù)進(jìn)行整理后,分成組畫出頻率分布直方圖的一部分(如圖),已知第組的頻數(shù)是.

1)求進(jìn)入決賽的人數(shù);

2)經(jīng)過多次測試后發(fā)現(xiàn),甲的成績均勻分布在米之間,乙的成績均勻分布在米之間,現(xiàn)甲、乙各跳一次,求甲比乙遠(yuǎn)的概率.

【答案】136;(2

【解析】

1)由頻率分直方圖求出第6小組的頻率,從而求出總?cè)藬?shù),進(jìn)而得到第4、56組成績均進(jìn)入決賽,由此能求出進(jìn)入決賽的人數(shù);

2)設(shè)甲、乙各跳一次的成績分別為xy米,則基本事件滿足的區(qū)域?yàn)椋?/span>,由此利用幾何概型能求出甲比乙遠(yuǎn)的概率.

1)第小組的頻率為

總?cè)藬?shù)為().

組成績均進(jìn)入決賽,

人數(shù)為(人),即進(jìn)入決賽的人數(shù)為.

2)設(shè)甲、乙各跳一次的成績分別為米,

則基本事件滿足的區(qū)域?yàn)?/span>

事件甲比乙遠(yuǎn)的概率滿足的區(qū)域?yàn)?/span>,如圖所示:

由幾何概型

即甲比乙遠(yuǎn)的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(I)若函數(shù)的圖象在處的切線斜率為1,求實(shí)數(shù)的值;

(Ⅱ)求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)若函數(shù)在[1,2]上是減函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圖①中ABC 為直角三角形D、E 分別為 AB、AC 的中點(diǎn),將ADE 沿 DE 折起使平面 ADEBCED,連接 AB,AC,BE如圖②所示.

1)在線段AC上找一點(diǎn)P,使EP∥平面ABD,并求出異面直線AB、EP所成的角;

2)在平面ABD內(nèi)找一點(diǎn)Q,使PQ⊥平面ABE,并求三棱錐P-ABE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知多面體的底面是邊長為2的菱形,平面,,且.

1)證明:平面平面

2)若直線與平面所成的角為45°,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí),令,是否存在區(qū)間,使得函數(shù)在區(qū)間上的值域?yàn)?/span>,若存在,求實(shí)數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A是圓錐的頂點(diǎn),BD是圓錐底面的直徑,C是底面圓周上一點(diǎn),ACBD2,BC1,點(diǎn)M在線段BD上,且BM,平面ABC和平面ACD將圓錐截去部分后的幾何體如圖所示.

1)求證:CMAD;

2)求AC與底面所成的角;

3)求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】鳳梨穗龍眼原產(chǎn)廈門,是廈門市的名果,栽培歷史已有100多年.龍眼干的級(jí)別按直徑的大小分為四個(gè)等級(jí)(如下表).

級(jí)別

三級(jí)品

二級(jí)品

一級(jí)品

特級(jí)品

某商家為了解某農(nóng)場一批龍眼干的質(zhì)量情況,隨機(jī)抽取了100個(gè)龍眼干作為樣本(直徑分布在區(qū)間),統(tǒng)計(jì)得到這些龍眼干的直徑的頻數(shù)分布表如下:

頻數(shù)

1

29

7

用分層抽樣的方法從樣本的一級(jí)品和特級(jí)品中抽取6個(gè),其中一級(jí)品有2個(gè).

1)求的值,并估計(jì)這批龍眼干中特級(jí)品的比例;

2)已知樣本中的100個(gè)龍眼干約500克,該農(nóng)場有500千克龍眼干待出售,商家提出兩種收購方案:

方案:以60/千克收購;

方案:以級(jí)別分裝收購,每袋100個(gè),特級(jí)品40/袋、一級(jí)品30/袋、二級(jí)品20/袋、三級(jí)品10/.

用樣本的頻率分布估計(jì)總體分布,哪個(gè)方案農(nóng)場的收益更高?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)yf(x)滿足:集合A={f(n)|n∈N*}中至少有三個(gè)不同的數(shù)成等差數(shù)列,則稱函數(shù)f(x)是“等差源函數(shù)”,則下列四個(gè)函數(shù)中,“等差源函數(shù)”的個(gè)數(shù)是(  )

y=2x+1;②y=log2x;③y=2x+1;

y=sin

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若在定義域上不單調(diào),求的取值范圍;

(2)設(shè)分別是的極大值和極小值,且,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案