定義
n
p1+p2+…+pn
為n個(gè)正數(shù)p1,p2,…pn的“均倒數(shù)”.若已知數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為
1
2n+1
,又bn=
an+1
4
,則
1
b1b2
+
1
b2b3
+…+
1
b10b11
=( 。
A.
1
11
B.
9
10
C.
10
11
D.
11
12
由已知得
n
a1+a2+…+an
=
1
2n+1
,
∴a1+a2+…+an=n(2n+1)=Sn
當(dāng)n≥2時(shí),an=Sn-Sn-1=4n-1,驗(yàn)證知當(dāng)n=1時(shí)也成立,
∴an=4n-1,
bn=
an+1
4
=n

1
bnbn+1
=
1
n
-
1
n+1

1
b1b2
+
1
b2b3
+…+
1
b10b11
=(1-
1
2
)+(
1
2
-
1
3
)
+…+(
1
10
-
1
11
)=
10
11

故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖州二模)定義
n
p1+p2+…+pn
為n個(gè)正數(shù)p1,p2,…pn的“均倒數(shù)”.若已知數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為
1
2n+1
,又bn=
an+1
4
,則
1
b1b2
+
1
b2b3
+…+
1
b10b11
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:稱
n
p1+p2+…+pn
為n個(gè)正數(shù)p1,p2,…pn的“均倒數(shù)”.若已知數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為
1
2n+1

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)cn=
an
2n+1
,試判定數(shù)列{cn}的單調(diào)性;
(3)設(shè)dn=2nan,試求數(shù)列{dn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:稱
n
p1+p2+…+pn
為n個(gè)正數(shù)p1,p2,…pn的“均倒數(shù)”.若已知數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為
1
2n+1

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)dn=2nan,試求數(shù)列{dn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

定義:稱
n
p1+p2+…+pn
為n個(gè)正數(shù)p1,p2,…pn的“均倒數(shù)”.若已知數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為
1
2n+1

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)dn=2nan,試求數(shù)列{dn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案