AB是圓O的直徑,D為圓O上一點(diǎn),過D作圓O的切線交AB延長線于點(diǎn)C,若DA=DC,求證:AB=2BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,圓與圓交于兩點(diǎn),以為切點(diǎn)作兩圓的切線分別交圓和圓于兩點(diǎn),延長交圓于點(diǎn),延長交圓于點(diǎn).已知.
(1)求的長;
(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知直角坐標(biāo)平面上點(diǎn)Q(2,0)和圓C:x2+y2=1,動(dòng)點(diǎn)M到圓C的切線長與|MQ|的比等于.求動(dòng)點(diǎn)M的軌跡方程,并說明它表示什么.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知☉O:x2+y2=1和定點(diǎn)A(2,1),由☉O外一點(diǎn)P(a,b)向☉O引切線PQ,切點(diǎn)為Q,且滿足|PQ|=|PA|.
(1)求實(shí)數(shù)a,b間滿足的等量關(guān)系.
(2)求線段PQ長的最小值.
(3)若以P為圓心所作的☉P與☉O有公共點(diǎn),試求半徑取最小值時(shí)☉P的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C上的動(dòng)點(diǎn)P()滿足到定點(diǎn)A(-1,0)的距離與到定點(diǎn)B(1,0)距離之比為
(1)求曲線C的方程。
(2)過點(diǎn)M(1,2)的直線與曲線C交于兩點(diǎn)M、N,若|MN|=4,求直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,且經(jīng)過點(diǎn),圓的直徑為的長軸.如圖,是橢圓短軸端點(diǎn),動(dòng)直線過點(diǎn)且與圓交于兩點(diǎn),垂直于交橢圓于點(diǎn).
(1)求橢圓的方程;
(2)求 面積的最大值,并求此時(shí)直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com