精英家教網 > 高中數學 > 題目詳情

已知橢圓的離心率為,且經過點,圓的直徑為的長軸.如圖,是橢圓短軸端點,動直線過點且與圓交于兩點,垂直于交橢圓于點.

(1)求橢圓的方程;
(2)求 面積的最大值,并求此時直線的方程.

(1) (2)

解析試題分析:(1)已知橢圓的離心率為即可得到的關系式,再結合橢圓過點,代入橢圓方程組成方程組可求解得到橢圓方程; (2) 要求面積可先求兩個弦長度,是一直線與圓相交得到的弦長,可采用圓的弦長公式,而是橢圓的弦長,使用公式求解,把面積表示成變量的函數, 求其最值時可用換元法求解.對當斜率為0時要單獨討論.
試題解析:(1)由已知得到,所以,即.
又橢圓經過點,故,
解得,
所以橢圓的方程是
(2)因為直線且都過點
①當斜率存在且不為0時,設直線,直線,即,
所以圓心到直線的距離為,所以直線被圓所截弦
得, ,
所以,
,
所以,
,則,
,
,即時,等號成立,
面積的最大值為,此時直線的方程為,
②當斜率為0時,即,此時,
的斜率不存在時,不合題意;
綜上, 面積的最大值為,此時直線的方程為.
考點:直線與圓的位置關系,弦長公式,換元法求函數最值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知圓滿足:①截y軸所得弦長為2;②被x軸分成兩段圓弧,其弧長的比為3∶1;③圓心到直線l:x-2y=0的距離為,求該圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

AB是圓O的直徑,D為圓O上一點,過D作圓O的切線交AB延長線于點C,若DA=DC,求證:AB=2BC.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知動圓與直線相切且與圓外切。
(1)求圓心的軌跡方程;
(2)過定點作直線交軌跡兩點,點關于坐標原點的對稱點,求證:;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓C的方程為:x2+y2-2mx-2y+4m-4=0.(m∈R).
(1)試求m的值,使圓C的面積最小;
(2)求與滿足(1)中條件的圓C相切,且過點(1,-2)的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓Cx2y2x-6ym=0與直線lx+2y-3=0.
(1)若直線l與圓C沒有公共點,求m的取值范圍;
(2)若直線l與圓C相交于P、Q兩點,O為原點,且OPOQ,求實數m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在平面直角坐標系xOy中,已知圓:和圓:

(1)若直線l過點A(4,0),且被圓C1截得的弦長為2,求直線l的方程;
(2)設P為平面上的點,滿足:存在過點P的無窮多對互相垂直的直線,它們分別與圓和圓相交,且直線被圓截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點P的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓C經過A(1,1)、B(2,)兩點,且圓心C在直線l:x-y+1=0上,求圓C的標準方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓C的半徑為2,圓心在軸正半軸上,直線與圓C相切
(1)求圓C的方程;
(2)過點的直線與圓C交于不同的兩點且為
求:的面積.

查看答案和解析>>

同步練習冊答案