已知雙曲線C的焦點、實軸端點恰好是橢圓的長軸的端點、焦點,則雙曲線C的方程為_______.

試題分析:橢圓的焦點在x軸上,且長軸端點坐標為,焦點為,所以雙曲線C的焦點、實軸端點分別為,,所以雙曲線的方程為,故填.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓C1的右焦點為F,P為橢圓上的一個動點.
(1)求線段PF的中點M的軌跡C2的方程;
(2)過點F的直線l與橢圓C1相交于點A、D,與曲線C2順次相交于點B、C,當時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓()的短軸長為2,離心率為.過點M(2,0)的直線與橢圓相交于、兩點,為坐標原點.
(1)求橢圓的方程;
(2)求的取值范圍;
(3)若點關于軸的對稱點是,證明:直線恒過一定點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的短半軸長為,動點在直線為半焦距)上.
(1)求橢圓的標準方程;
(2)求以為直徑且被直線截得的弦長為的圓的方程;
(3)設是橢圓的右焦點,過點的垂線與以為直徑的圓交于點,
求證:線段的長為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓:的離心率為,過橢圓右焦點的直線與橢圓交于點(點在第一象限).
(1)求橢圓的方程;
(2)已知為橢圓的左頂點,平行于的直線與橢圓相交于兩點.判斷直線是否關于直線對稱,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓
(1)求橢圓C的標準方程。
(2)過點Q(0,)的直線與橢圓交于A、B兩點,與直線y=2交于點M(直線AB不經(jīng)過P點),記PA、PB、PM的斜率分別為k1、k2、k3,問:是否存在常數(shù),使得若存在,求出名的值:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓G:.過點(m,0)作圓的切線l交橢圓G于A,B兩點.
(1)求橢圓G的焦點坐標和離心率;
(2)將表示為m的函數(shù),并求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在橢圓中,左焦點為, 右頂點為, 短軸上方端點為,若,則該橢圓的離心率為___________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是橢圓上的點,、是橢圓的兩個焦點,,則 的面積等于______________.

查看答案和解析>>

同步練習冊答案