精英家教網(wǎng)如圖,面ABEF⊥面ABCD,四邊形ABEF與四邊形ABCD都是直角梯形,∠BAD=∠FAB=90°,BC
.
.
1
2
AD,BE
.
.
1
2
AF,G、H分別是FA、FD的中點.
(Ⅰ)證明:四邊形BCHG是平行四邊形;
(Ⅱ)C、D、E、F四點是否共面?為什么?
分析:(I)欲證明:四邊形BCHG是平行四邊形,通過三角形中位線定理證得其一組對邊平行且相等即可;
(II)C,D,F(xiàn),E四點共面.理由是:由EF∥BG,結(jié)合(Ⅰ)知BG∥CH,所以EF∥CH,從而共面.
解答:精英家教網(wǎng)證明:(Ⅰ)由題意知,F(xiàn)G=GA,F(xiàn)H=HD
所以GH
.
.
1
2
AD
,又BC
.
.
1
2
AD
,故GH
.
.
BC
所以四邊形BCHG是平行四邊形.
(Ⅱ)C,D,F(xiàn),E四點共面.理由如下:
由BE
.
.
1
2
AF,G是FA的中點知,BE
.
.
GA,即有BE
.
.
GF,所以四邊形BEFG是平行四邊形,
所以EF∥BG
由(Ⅰ)知BG∥CH,所以EF∥CH,故EC,F(xiàn)H共面.
又點D在直線FH上
所以C,D,F(xiàn),E四點共面.
點評:本小題主要考查平面的基本性質(zhì)及推論、確定平面的條件、共面的證明方法、平行四邊形的特征等基礎(chǔ)知識,考查空間想象力、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,面ABEF⊥面ABCD,四邊形ABEF與四邊形ABCD都是直角梯形,∠BAD=∠FAB=90°,BC
.
.
1
2
AD,BE
.
.
1
2
AF,G、H分別是FA、FD的中點.
(Ⅰ)證明:四邊形BCHG是平行四邊形;
(Ⅱ)C、D、E、F四點是否共面?為什么?
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省高考真題 題型:解答題

如圖,面ABEF⊥面ABCD,四邊形ABEF與四邊形ABCD都是直角梯形,∠BAD=∠FAB=90°,BCAD,BEAF,G、H分別是FA、FD的中點,
(Ⅰ)證明:四邊形BCHG是平行四邊形;
(Ⅱ)C、D、E、F四點是否共面?為什么?
(Ⅲ)設(shè)AB=BE,證明:平面ADE⊥平面CDE。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省高考真題 題型:解答題

如圖,面ABEF⊥面ABCD,四邊形ABEF與ABCD都是直角梯形,∠BAD=∠BAF=90°,BCAD,BEAF.
(Ⅰ)求證:C、D、E、F四點共面;
(Ⅱ)若BA=BC=BE,求二面角A-ED-B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪復(fù)習(xí)鞏固與練習(xí):空間點、線、面之間的位置關(guān)系(解析版) 題型:解答題

如圖,面ABEF⊥面ABCD,四邊形ABEF與四邊形ABCD都是直角梯形,∠BAD=∠FAB=90°,BCAD,BEAF,G、H分別是FA、FD的中點.
(Ⅰ)證明:四邊形BCHG是平行四邊形;
(Ⅱ)C、D、E、F四點是否共面?為什么?

查看答案和解析>>

同步練習(xí)冊答案