(本題滿分14分)設直線. 若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意x∈R都有. 則稱直線l為曲線S的“上夾線”.(Ⅰ)已知函數(shù).求證:為曲線的“上夾線”.
(Ⅱ)觀察下圖:
根據(jù)上圖,試推測曲線的“上夾線”的方程,并給出證明.
略
(Ⅰ)由得, -------1分
分當時,,此時,, -------2分
,所以是直線與曲線的一個切點;-------3分
當時,,此時,, ------4分
,所以是直線與曲線的一個切點; -----5分
所以直線l與曲線S相切且至少有兩個切點;
對任意x∈R,,所以 --------6分
因此直線是曲線的“上夾線”. ----------7分
(Ⅱ)推測:的“上夾線”的方程為 ------9分
①先檢驗直線與曲線相切,且至少有兩個切點:
設: ,
令,得:(kZ)-----10分
當時,
故:過曲線上的點(,)的切線方程為:
y-[]= [-()],化簡得:.
即直線與曲線相切且有無數(shù)個切點. ----12分
不妨設,②下面檢驗g(x)F(x)g(x)-F(x)=
直線是曲線的“上夾線”. --------14分
科目:高中數(shù)學 來源: 題型:
(本題滿分14分)
設函數(shù),。
(1)若,過兩點和的中點作軸的垂線交曲線于點,求證:曲線在點處的切線過點;
(2)若,當時恒成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分14分)設函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)求在[—1,2]上的最小值; (3)當時,用數(shù)學歸納法證明:
查看答案和解析>>
科目:高中數(shù)學 來源:2011——2012學年湖北省洪湖二中高三八月份月考試卷理科數(shù)學 題型:解答題
(本題滿分14分)設橢圓的左、右焦點分別為F1與
F2,直線過橢圓的一個焦點F2且與橢圓交于P、Q兩點,若的周長為。
(1)求橢圓C的方程;
(2)設橢圓C經(jīng)過伸縮變換變成曲線,直線與曲線相切
且與橢圓C交于不同的兩點A、B,若,求面積的取值范圍。(O為坐標原點)
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年浙江省杭州市高三寒假作業(yè)數(shù)學卷三 題型:解答題
(本題滿分14分)設M是由滿足下列條件的函數(shù)構成的集合:“①方有實數(shù)根;②函數(shù)的導數(shù)滿足”
(I)證明:函數(shù)是集合M中的元素;
(II)證明:函數(shù)具有下面的性質:對于任意,都存在,使得等式成立。
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年廣東省揭陽市高三調(diào)研檢測數(shù)學理卷 題型:解答題
本題滿分14分)
設函數(shù).
(1)若,求函數(shù)的極值;
(2)若,試確定的單調(diào)性;
(3)記,且在上的最大值為M,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com