(本題滿分14分)設直線. 若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意xR都有. 則稱直線l為曲線S的“上夾線”.(Ⅰ)已知函數(shù).求證:為曲線的“上夾線”.

(Ⅱ)觀察下圖:

           

    根據(jù)上圖,試推測曲線的“上夾線”的方程,并給出證明.


解析:

(Ⅰ)由, -------1分

分當時,,此時,, -------2分

,所以是直線與曲線的一個切點;-------3分

時,,此時,, ------4分

,所以是直線與曲線的一個切點;  -----5分

所以直線l與曲線S相切且至少有兩個切點;

對任意xR,所以  --------6分

因此直線是曲線的“上夾線”.        ----------7分

(Ⅱ)推測:的“上夾線”的方程為       ------9分

①先檢驗直線與曲線相切,且至少有兩個切點:

設: ,

,得:kZ)-----10分

時,

故:過曲線上的點(,)的切線方程為:

y[]= [-()],化簡得:

即直線與曲線相切且有無數(shù)個切點. ----12分

不妨設,②下面檢驗g(x)F(x)g(x)F(x)=

直線是曲線的“上夾線”. --------14分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本題滿分14分)

設函數(shù),。

(1)若,過兩點的中點作軸的垂線交曲線于點,求證:曲線在點處的切線過點;

(2)若,當恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分14分)設函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)求在[—1,2]上的最小值; (3)當時,用數(shù)學歸納法證明:

查看答案和解析>>

科目:高中數(shù)學 來源:2011——2012學年湖北省洪湖二中高三八月份月考試卷理科數(shù)學 題型:解答題

(本題滿分14分)設橢圓的左、右焦點分別為F1
F2,直線過橢圓的一個焦點F2且與橢圓交于P、Q兩點,若的周長為
(1)求橢圓C的方程;
(2)設橢圓C經(jīng)過伸縮變換變成曲線,直線與曲線相切
且與橢圓C交于不同的兩點A、B,若,求面積的取值范圍。(O為坐標原點)

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年浙江省杭州市高三寒假作業(yè)數(shù)學卷三 題型:解答題

(本題滿分14分)設M是由滿足下列條件的函數(shù)構成的集合:“①方有實數(shù)根;②函數(shù)的導數(shù)滿足

 (I)證明:函數(shù)是集合M中的元素;

 (II)證明:函數(shù)具有下面的性質:對于任意,都存在,使得等式成立。 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省揭陽市高三調(diào)研檢測數(shù)學理卷 題型:解答題

本題滿分14分)

設函數(shù).

(1)若,求函數(shù)的極值;

(2)若,試確定的單調(diào)性;

(3)記,且上的最大值為M,證明:

 

 

查看答案和解析>>

同步練習冊答案