2.存在函數(shù)f(x)滿足對任意的x∈R都有( 。
A.f(|x|)=x+1B.f(x2+4x)=|x+2|C.f(2x2+1)=xD.f(cosx)=$\sqrt{x}$

分析 根據(jù)函數(shù)解析式,舉特殊值,計算函數(shù)值,可判斷A,C,D均不恒成立,可得B正確.

解答 解:A項,當x=1時,f(1)=2;當x=-1時,f(1)=0,不合題意;
C項,當x=1時,f(3)=1;當x=-1時,f(3)=-1,不合題意;
D項,當x=0時,f(1)=1;當x=2π時,f(1)=$\sqrt{2π}$,不合題意;
故選B.

點評 本題考察了函數(shù)的定義域性質(zhì),解析式,特值法求解函數(shù)的問題,關鍵舉反例得出結(jié)論.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.若一個箱內(nèi)裝別標有號碼1,2,…,50的50個小球,從中任意取兩個球把其上的號碼相加.
計算:
(1)其和能被3整除的概率;
(2)其和不能被3整除的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設拋物線y2=8x的交點為F,定直線l:x=4,P為平面上一動點,過點P作l的垂線,垂足為Q,且($\overrightarrow{PQ}$+$\sqrt{2}$$\overrightarrow{PF}$)•(($\overrightarrow{PQ}$-$\sqrt{2}$$\overrightarrow{PF}$)=0
(1)求點P的軌跡C的方程;
(2)直線l是圓O:x2+y2=r2的任意一條切線,l與曲線C交于A、B兩點,若以AB為直徑的圓恒過原點,求圓O的方程,并求出|AB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知直線l經(jīng)過點p(3,4),且它的傾斜角θ=120°.
(1)寫出直線l的參數(shù)方程;
(2)求直線l與直線x一y+1=0的交點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知曲線$\left\{\begin{array}{l}{x=3cosθ}\\{y=5sinθ}\end{array}\right.$(θ為參數(shù)且0≤θ≤$\frac{π}{2}$)上一點P與原點O的距離為$\sqrt{13}$,則P點坐標為($\frac{3\sqrt{3}}{2}$,$\frac{5}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知tanα=-$\frac{3}{4}$,且α∈(0,π).
(1)求sinα;
(2)求sin(-2π-α)-cos(π-α).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.正△ABP的頂點A(0,a)(a>0)為定點,頂點B在x軸上移動,且頂點A、B、P的順序是逆時針方向,求頂點P的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.如圖,是一個算法的程序框圖,當輸出的y值為2時,若將輸入的x的所有可能值按從小到大的順序排列得到一個數(shù)列{an},則該數(shù)列的通項公式為an=an=3n-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.某幾何體的正視圖和側(cè)(左)視圖都是邊長為2的正方體,俯視圖是扇形,體積為2π,該幾何體的表面積為( 。
A.8+4πB.4+4πC.8+2πD.4+2π

查看答案和解析>>

同步練習冊答案