(本小題滿分14分)

個(gè)首項(xiàng)為1,項(xiàng)數(shù)為的等差數(shù)列,設(shè)其第個(gè)等差數(shù)列的第項(xiàng)為,且公差為. 若,,

也成等差數(shù)列.

(Ⅰ)求)關(guān)于的表達(dá)式;

(Ⅱ)將數(shù)列分組如下:,,,,)…,

(每組數(shù)的個(gè)數(shù)組成等差數(shù)列),設(shè)前組中所有數(shù)之和為,求數(shù)列的前項(xiàng)和

(Ⅲ)設(shè)是不超過(guò)20的正整數(shù),當(dāng)時(shí),對(duì)于(Ⅱ)中的,求使得不等式

成立的所有的值.

(滿分14分)

解(Ⅰ)由題意知,

,同理,

,,…,

成等差數(shù)列,

所以,

.

是公差是的等差數(shù)列.

所以,).       ………………………5分

(Ⅱ)由(Ⅰ)知

數(shù)列分組如下:,,,….

按分組規(guī)律,第組中有個(gè)奇數(shù),

所以第1組到第組共有個(gè)奇數(shù).

注意到前個(gè)奇數(shù)的和為

所以前個(gè)奇數(shù)的和為,即前組中所有數(shù)之和為,所以

    因?yàn)?sub>,所以,從而

所以 .

,

,

所以 .              ……………………………………10分

(Ⅲ)由(Ⅱ)得.

故不等式 就是

考慮函數(shù)

當(dāng)時(shí),都有,即

,

注意到當(dāng)時(shí),單調(diào)遞增,故有.

因此當(dāng)時(shí),成立,即成立.

所以滿足條件的所有正整數(shù).…………………………………14

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡(jiǎn)f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時(shí),求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對(duì)一應(yīng)季商品過(guò)去20天的銷(xiāo)售價(jià)格及銷(xiāo)售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷(xiāo)售價(jià)格(單位:元)為,第天的銷(xiāo)售量為,已知該商品成本為每件25元.

(Ⅰ)寫(xiě)出銷(xiāo)售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤(rùn);

(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案