①若函數(shù)f(x)=x3-3x+m在[0,2]上存在零點,則實數(shù)m的取值范圍是
-2≤m≤2
-2≤m≤2

②若函數(shù)f(x)=x3-3x+m在[0,2]上存在兩個不同的零點,則實數(shù)m的取值范圍是
0≤m<2
0≤m<2
分析:①利用導數(shù)求出函數(shù)f(x)的單調區(qū)間及極大值、極小值、f(0)、f(2),結合函數(shù)f(x)的圖象,先求出函數(shù)f(x)=x3-3x+m在[0,2]上不存在零點時m的范圍,然后求其補集即可;
②結合函數(shù)f(x)的圖象,由函數(shù)f(x)=x3-3x+m在[0,2]上存在兩個不同零點,可對f(0)、f(1)、f(2)的符號進行限制,由此可求出m的取值范圍.
解答:解:①f′(x)=3x2-3=3(x+1)(x-1),
當x<-1或x>1時,f′(x)>0,當-1<x<1時,f′(x)<0,
所以f(x)在(-∞,-1),(1,+∞)上單調遞增;在(-1,1)上單調遞減.
所以當x=-1時f(x)取得極大值f(-1)=2+m,當x=1時f(x)取得極小值f(1)=-2+m,f(0)=m,f(2)=2+m.
若函數(shù)f(x)=x3-3x+m在[0,2]上不存在零點,則有f(1)>0或
f(0)<0
f(2)<0
即-2+m>0或
m<0
2+m<0
,解得m>2或m<-2,
所以當函數(shù)f(x)=x3-3x+m在[0,2]上存在零點時,實數(shù)m的取值范圍是[-2,2].
故答案為:-2≤m≤2.
(2)若函數(shù)f(x)=x3-3x+m在[0,2]上存在兩個不同的零點,由(1)知,
f(0)≥0
f(1)<0
f(2)≥0
,即
m≥0
-2+m<0
2+m≥0
,解得0≤m<2.
故答案為:0≤m<2.
點評:本題考查應用導數(shù)研究函數(shù)的單調性、極值問題,考查分析問題解決問題的能力以及數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)(x∈R)為奇函數(shù),且存在反函數(shù)f-1(x)(與f(x)不同),F(x)=
2f(x)-2f-1(x)
2f(x)+2f-1(x)
,則下列關于函數(shù)F(x)的奇偶性的說法中正確的是( 。
A、F(x)是奇函數(shù)非偶函數(shù)
B、F(x)是偶函數(shù)非奇函數(shù)
C、F(x)既是奇函數(shù)又是偶函數(shù)
D、F(x)既非奇函數(shù)又非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

同步練習冊答案