設(shè)a>0,b>0,稱ab的調(diào)和平均數(shù).如圖,C為線毆AB上的點(diǎn),且ACa,CBb,OAB中點(diǎn),以AB為直徑作半圓.過點(diǎn)COD的垂線,垂足為E.連結(jié)OD,ADBD.過點(diǎn)COD的垂線,垂足為E.則圖中線段OD的長度是a,b的算術(shù)平均數(shù),線段________的長度是a,b的幾何平均數(shù),線段________的長度是a,b的調(diào)和平均數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)a>0,b>0,稱
2aba+b
為a,b的調(diào)和平均數(shù).如圖,C為線段AB上的點(diǎn),且AC=a,CB=b,O為AB中點(diǎn),以AB為直徑做半圓.過點(diǎn)C作AB的垂線交半圓于D.連接OD,AD,BD.過點(diǎn)C作OD的垂線,垂足為E.則圖中線段OD的長度是a,b的算術(shù)平均數(shù),線段
 
的長度是a,b的幾何平均數(shù),線段
 
的長度是a,b的調(diào)和平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,b>0,稱
2aba+b
為a,b的調(diào)和平均數(shù).如圖,C為線段AB上的點(diǎn),且AC=a,CB=b,O為AB中點(diǎn),以AB為直徑做半圓.過點(diǎn)C作AB的垂線交半圓于D.連接OD,AD,BD.過點(diǎn)C作OD的垂線,垂足為E.則圖中線段OD的長度是a,b的算術(shù)平均數(shù),線段CD的長度是a,b的幾何平均數(shù),那么a,b的調(diào)和平均數(shù)是線段
DE
DE
的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若給定橢圓C:ax2+by2=1(a>0,b>0,a≠b)和點(diǎn)N(x0,y0),則稱直線l:ax0x+by0y=1為橢圓C的“伴隨直線”.
(1)若N(x0,y0)在橢圓C上,判斷橢圓C與它的“伴隨直線”的位置關(guān)系(當(dāng)直線與橢圓的交點(diǎn)個(gè)數(shù)為0個(gè)、1個(gè)、2個(gè)時(shí),分別稱直線與橢圓相離、相切、相交),并說明理由;
(2)命題:“若點(diǎn)N(x0,y0)在橢圓C的外部,則直線l與橢圓C必相交.”寫出這個(gè)命題的逆命題,判斷此逆命題的真假,說明理由;
(3)若N(x0,y0)在橢圓C的內(nèi)部,過N點(diǎn)任意作一條直線,交橢圓C于A、B,交l于M點(diǎn)(異于A、B),設(shè)
MA
=λ1
AN
MB
=λ2
BN
,問λ12是否為定值?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年湖北省高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)a>0,b>0,已知函數(shù)f(x)=
(Ⅰ)當(dāng)a≠b時(shí),討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)x>0時(shí),稱f(x)為a、b關(guān)于x的加權(quán)平均數(shù).
(i)判斷f(1),f(),f()是否成等比數(shù)列,并證明f()≤f();
(ii)a、b的幾何平均數(shù)記為G.稱為a、b的調(diào)和平均數(shù),記為H.若H≤f(x)≤G,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)a>0,b>0,稱
2ab
a+b
為a,b的調(diào)和平均數(shù).如圖,C為線段AB上的點(diǎn),且AC=a,CB=b,O為AB中點(diǎn),以AB為直徑做半圓.過點(diǎn)C作AB的垂線交半圓于D.連接OD,AD,BD.過點(diǎn)C作OD的垂線,垂足為E.則圖中線段OD的長度是a,b的算術(shù)平均數(shù),線段CD的長度是a,b的幾何平均數(shù),那么a,b的調(diào)和平均數(shù)是線段______的長度.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案