18.已知a>0,不等式$x+\frac{1}{x}≥2,x+\frac{4}{x^2}≥3,…$,可推廣為$x+\frac{a}{x^n}≥n+1$,則a=nn

分析 由已知中不等式$x+\frac{1}{x}≥2,x+\frac{4}{x^2}≥3,…$,歸納不等式兩邊各項(xiàng)的變化規(guī)律,可得答案.

解答 解:由已知中不等式$x+\frac{1}{x}≥2,x+\frac{4}{x^2}≥3,…$,
歸納可得:不等式左邊第一項(xiàng)為x.第二項(xiàng)為$\frac{{n}^{n}}{{x}^{n}}$,右邊為n+1,
故第n個(gè)不等式為:x+$\frac{{n}^{n}}{{x}^{n}}$≥n+1,
∴a=nn
故答案為nn

點(diǎn)評(píng) 本題考查了歸納推理,根據(jù)一類事物的部分對(duì)象具有某種性質(zhì),推出這類事物的所有對(duì)象都具有這種性質(zhì)的推理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知等差數(shù)列{an}滿足:a1=2,且a22=a1a5
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記Sn為數(shù)列{an}的前n項(xiàng)和,是否存在正整數(shù)n,使得Sn>60n+800?若存在,求n的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知平面直角坐標(biāo)系xoy內(nèi)兩個(gè)定點(diǎn)A(1,0)、B(4,0),滿足PB=2PA的點(diǎn)P(x,y)形成的曲線記為Γ.
(1)求曲線Γ的方程;
(2)過點(diǎn)B的直線l與曲線Γ相交于C、D兩點(diǎn),當(dāng)△COD的面積最大時(shí),求直線l的方程(O為坐標(biāo)原點(diǎn));
(3)設(shè)曲線Γ分別交x、y軸的正半軸于M、N兩點(diǎn),點(diǎn)Q是曲線Γ位于第三象限內(nèi)一段上的任意一點(diǎn),連結(jié)QN交x軸于點(diǎn)E、連結(jié)QM交y軸于F.求證四邊形MNEF的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=2x-lnx的單調(diào)遞減區(qū)間為(  )
A.$({-∞,\frac{1}{2}})$B.$({\frac{1}{2},+∞})$C.$({0,\frac{1}{2}})$D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知某漁船在漁港O的南偏東60°方向,距離漁港約160海里的B處出現(xiàn)險(xiǎn)情,此時(shí)在漁港的正上方恰好有一架海事巡邏飛機(jī)A接到漁船的求救信號(hào),海事巡邏飛機(jī)迅速將情況通知了在C處的漁政船并要求其迅速趕往出事地點(diǎn)施救.若海事巡邏飛機(jī)測得漁船B的俯角為68.20°,測得漁政船C的俯角為63.43°,且漁政船位于漁船的北偏東60°方向上.
(Ⅰ)計(jì)算漁政船C與漁港O的距離;
(Ⅱ)若漁政船以每小時(shí)25海里的速度直線行駛,能否在3小時(shí)內(nèi)趕到出事地點(diǎn)?
(參考數(shù)據(jù):sin68.20°≈0.93,tan68.20°≈2.50,shin63.43°≈0.90,tan63.43°≈2.00,$\sqrt{11}$≈3.62,$\sqrt{13}$≈3.61)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)y=f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x≥0時(shí),f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}+1,(x>2)}\\{\frac{5}{16}{x}^{2},(0≤x≤2)}\end{array}\right.$,若關(guān)于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且僅有6個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是(  )
A.[-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1]B.(-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1)C.(-$\frac{5}{2}$,-$\frac{9}{4}$)D.(-$\frac{9}{4}$,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.定義a⊕b=max{a,b},如:3⊕2=3,2⊕2=2,設(shè)$f(x)=({x^2}-\frac{15}{4})⊕({2^x})$,則函數(shù)f(x)的最小值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列四個(gè)函數(shù)中,在(0,+∞)上是增函數(shù)的是( 。
A.f(x)=-$\frac{1}{x+1}$B.f(x)=x2-3xC.f(x)=3-xD.f (x)=-|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)f(x)在定義域內(nèi)滿足:
(1)對(duì)于任意不相等的x1,x2,有x1f(x2)+x2f(x1)>x1f(x1)+x2f(x2);
(2)存在正數(shù)M,使得|f(x)|≤M,則稱函數(shù)f(x)為“單通道函數(shù)”,給出以下4個(gè)函數(shù):
①f(x)=sin(x+$\frac{x}{4}$)+cos(x+$\frac{π}{4}$),x∈(0,π);
②g(x)=lnx+ex,x∈[1,2];
③h(x)=x3-3x2,x∈[1,2];
④φ(x)=$\left\{\begin{array}{l}{-{2}^{x},-1≤x<0}\\{lo{g}_{\frac{1}{2}}(x+1)-1,0<x≤1}\end{array}\right.$,其中,“單通道函數(shù)”有①③④.

查看答案和解析>>

同步練習(xí)冊(cè)答案