分析 (Ⅰ)利用正弦定理可知$a=\sqrt{3}c$.余弦定理求出c,即可證明;
(Ⅱ)先求出B,再利用余弦定理和正弦定理求出c,a,sinC,即可求出AC邊上的高.
解答 解:(Ⅰ)依題意,由正弦定理可知$a=\sqrt{3}c$.
由余弦定理,得$7={({\sqrt{3}c})^2}+{c^2}$$-2({\sqrt{3}c})•c•cosB$,
故c2=7,$c=\sqrt{7}=b$,故sinB=sinC.
(Ⅱ)因為$cos2B=\frac{1}{2}$,故$2B=\frac{5}{3}π$,故$B=\frac{5}{6}π$.
由余弦定理可得$7={({\sqrt{3}c})^2}+{c^2}-$$2({\sqrt{3}c})•c•cosB$,解得c=1,$a=\sqrt{3}$.
由正弦定理可得$\frac{1}{sinC}=\frac{{\sqrt{7}}}{{sin\frac{5π}{6}}}$,解得$sinC=\frac{{\sqrt{7}}}{14}$,
故$h=\sqrt{3}sinC=\frac{{\sqrt{21}}}{14}$.
點評 本題考查正弦定理和余弦定理的運用,考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 小趙、小譚 | B. | 小馬、小宋 | C. | 小馬、小譚 | D. | 小趙、小宋 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({\frac{{\sqrt{5}}}{2},\frac{{\sqrt{5}}}{2}})$ | B. | $({\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}})$ | C. | $({\frac{1}{2},\frac{1}{2}})$ | D. | (1,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $2\sqrt{3}$ | C. | $\sqrt{13}$ | D. | $\sqrt{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2) | B. | (2,+∞) | C. | [-1,2) | D. | [-1,2] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com