若sin2x、sinx分別是sinθ與cosθ的等差中項(xiàng)和等比中項(xiàng),則cos2x的值為(  )

A.   B.   C.   D.

 

【答案】

【解析】

試題分析:若、分別是的等差中項(xiàng)和等比中項(xiàng),所以,由此可得,,即,解得,又由,得,所以不合題意。故選A.

考點(diǎn):等差中項(xiàng)和等比中項(xiàng)的定義以及三角變換.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若sin2x、sinx分別是sinθ與cosθ的等差中項(xiàng)和等比中項(xiàng),則cos2x的值為:( 。
A、
1+
33
8
B、
1-
33
8
C、
33
8
D、
1-
2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=sin(2x+
π
4
)的圖象按向量
a
方向平移可得到函數(shù)y=sin2x的圖象,則
a
可以是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2x+2
3
sinxcosx+sin(x+
π
4
)sin(x-
π
4
),x∈R

(1)求f(x)的最小正周期和值域;
(2)若x=x0(0≤x0
π
2
)
為f(x)的一個零點(diǎn),求sin2x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2x+2
3
sinxcosx+sin(x+
π
4
)sin(x-
π
4
)

(1)求f(x)的最小正周期和f(x)的值域;
(2)若x=x0(0≤x0
π
2
)
為f(x)的一個零點(diǎn),求f(2x0)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2x+2sinx•sin(
π
2
-x)+3sin2(
2
-x)

(1)若tanx=
1
2
,求f(x)的值;
(2)求函數(shù)f(x)最小正周期及單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案